Рационал бутархайтай ажиллаж сурах II

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3331 Нийтийн

Хоёр тойрогийн харилцан байршлыг тэдгээрийн радиусууд R, r болон төв хоорондын зай d гээр харьцуулан тодорхойлохыг авч үзье. Тодорхой байх үүднээс R≥r гэж үзье. Тойргууд харилцан байрших байрлалуудыг авч үзвэл

  Нээгдсэн тоо: 4316 Бүртгүүлэх

Тоон дараалал

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу ямар нэгэн un тоогоор соливол шинэ тоон цуваа үүснэ.
тэмдэглэгээ

  Нээгдсэн тоо: 3408 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

  Нээгдсэн тоо: 7455 Төлбөртэй

Олон өнцөгт хавтгайн хэсгүүдээс бүрдсэн биетийг олон талт гэнэ. Эдгээр олон өнцөгтийг талууд, тэдгээрийн талуудыг ирмэгүүд, оройнуудыг нь олон талтын оройнууд гэнэ. Хоёр оройг холбосон нэг тал дээр оршдоггүй хэрчмийг олон талтын диагнал гэдэг. Бүх диагнал нь олон талт дотроо байдаг биетийг гүдгэр олон талт гэнэ.

Призм

Призм гэдэг нь /Зур. 79/ хоёр тал  нь ( призмийн суурь) ABCDEF ба abcdef гэсэн паралел ижил олон өнцөгт , бусад талууд нь шулуунуудтай паралел паралелграм хавтгайнуудаас бүрдсэн олон талт юм. паралелграмуудыг хажуу талууд шулуунуудыг хажуу ирмэгүүд гэдэг. Нэг сууриас нөгөө суурьт буулгасан дурын перпендикуляр нь призмийн өндөр болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 255

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 339

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 307

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 404

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 450

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 478

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 561

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 637

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 673

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1414

 

тэгшитгэл бод.

Нээгдсэн тоо : 1020

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1066