Рационал бутархайтай ажиллаж сурах II

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 9130 Төлбөртэй

Гурван талтай / эсвэл гурван өнцөгтэй / олон өнцөгтийг гурвалжин гэнэ. Гурвалжингийн талуудыг голдуу жижиг үсгээр , талын эсрэг орших оройг том үсгээр тэмдэглэдэг.

Гурвалжингийн бүх гурван өнцөг нь /Зур. 20/ хурц байвал хурц өнцөгт , аль нэг өнцөг нь /Зур. 21/ тэгш байвал тэгш өнцөгт гурвалжин гэж нэрлэнэ. Тэгш өнцөгт гурвалжны тэгш өнцгийг үүсгэж байгаа a, b талуудыг катетууд, харин тэгш өнцгийн эсрэг орших талыг гипотенуз гэдэг. Гурвалжингийн аль нэг өнцөг нь /Зур. 22/ мохоо байвал мохоо өнцөгт гурвалжин гэнэ.

  Нээгдсэн тоо: 1663 Нийтийн

Ямар нэгэн зүйл /обьект/ эсхүл хийгдэж буй үйлдлийн тоог мэдэхийн тулд тэдгээрийг тоолох хэрэгтэй. Тоолол гэдэг нь ямар нэгэн тоон үзүүлэлтийг тооцох үйлдэл эсхүл тооллогоор илэрхийлэгдэнэ. Тоололд орж буй тусдаа обьект бүр эсхүл тусдаа үйлдэл бүрийг нэгж гэнэ. Нэгж гэдэг нь тусдаа обьектын хийсвэрлэлийг илэрхийлэх тоо юм. Тоололын үр дүн буюу тоологдсон нэгжийн нийлбэрийг тоо гэж нэрлэнэ.

  Нээгдсэн тоо: 3386 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

  Нээгдсэн тоо: 7414 Нийтийн

Бодлого бодохыг юу гэж ойлгох вэ? Бидний ихэнх нь бодлогыг ухаантай хүмүүс л боддог гэж ойлгоод байдаг. Математикийн шинжлэх ухаанд шийдэгдээгүй асуудлууд олон бий. Эдгээрийн шийдлийг гарган теорем, дүрэм батлах зэрэг нь үнэхээр ухаантай хүмүүсийг ажил. Энэ бол зөвхөн математикийн ухаанд ч биш бүхий л салбарт ийм жамтай. Харин эдгээр суут хүмүүсийн гаргасан шийдлийг хүн бүр өдөр тутмын амьдралдаа байнга ашиглаж байдгаа тэр бүр мэдээд байдаггүй. Жирийн хүмүүсийн хувьд математикийн бодлого бодно гэдэг нь ердөө эрдэмтэн мэргэдийн гаргасан шийдлийг ашиглах л юм. Түүнээс шинээр ямар нэгэн арга зохиогоод шийдэл гаргаад байх ерөөсөө биш. Бодлого бодох гэдэг нь компьютер ашиглах, гар утасны функцээ ажлуулах, машин жолоодохтой ижил ердийн ажил.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 230

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 317

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 277

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 375

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 423

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 446

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 515

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 595

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 619

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1295

 

Нээгдсэн тоо : 1065

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 178