Рационал бутархайтай ажиллаж сурах II

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6149 Нийтийн

Бөөрөнхий гадаргуу гэдэг нь огторгуйд байрлах O гэсэн нэг цэгээс ижил зайд орших цэгүүдийн олонлог / цэгийн геометр байрлал / юм. O цэгийг бөөрөнхий гадаргуун төв гэнэ. /Зур. 90/ AO радиус, AB диаметрийг тойрог дээрхтэй адилаар тодорхойлно.
Бөөрөнхий гадаргуугаар хязгаарлагдсан биетийг шаар /бөмбөлөг/ гэнэ. Шаарын бүх хавтгай зүсэлт нь дугуй байна. /Зур. 90/ Хамгийн том дугуй нь шаарын төвийг дайрсан зүсэлтээр үүсэх бөгөөд том дугуй гэж нэрлэнэ. Дурын хоёр том дугуй шаарын диаметрээр огтлолцоно. /Зур. 91/ Шаарын диаметрын төгсгөлд байрлах хоёр цэгийг дайруулан хязгааргүй олон том дугуй татаж болно.

  Нээгдсэн тоо: 996 Нийтийн

Эсрэг тоонууд гэдэг нь бие биеэсээ зөвхөн тэмдэгээрээ ялгаатай тоонууд.

Жишээ нь

+1 ба -1;  +12,5 ба -12,5;  +100 ба -100 бол эсрэг тоонууд

Тоо бүрд түүний эсрэг тоо зөвхөн нэг л байдаг.

  Нээгдсэн тоо: 6311 Бүртгүүлэх

Урвуу функц

Хэрвээ аргумент ба функцийн үүргийг соливол y ээс хамаарсан x функц болно. Энэ тохиолдолд урвуу функц гэсэн ойлголт гарч ирнэ.
гэсэн функц байсан гэе. Энд u нь аргумент, v нь функц. Хэрвээ эдгээрийн үүргийг соливол v ээс хамаарсан u функц гарна.
Одоо дээрх хоёр функцийн аргументийн нь x, функцийн нь y гэвэл гэсэн нэг нь нөгөөдөө урвуу хоёр функц гарна.

  Нээгдсэн тоо: 4107 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 225

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 310

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 269

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 369

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 414

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 440

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 507

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 588

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 608

 
Энэ долоо хоногт

Өдрийн хуваарьт 5 хичээл ордог. Тэгвэл 11 хичээлээс зохиож болох хуваарийн хувилбарын тоог ол. Нэг хичээл өдөрт нэг удаа л орно.

Нээгдсэн тоо : 1950

 

y=8x3 ба y=8x функцуудын графикаар хязгаарлагдсан дүрсийн талбайг ол.

Нээгдсэн тоо : 1069

 

тэгшитгэлийн язгуурууд x1 , x2 , x3 бол

Нээгдсэн тоо : 696