Квадрат тэгшитгэлийг бодох

Энэхүү хичээлээр бид квадрат тэгшитгэлтэй холбогдолтой шийдийг олох томьёо, Виетийн терем, квадрат гурван гишүүнтийг үржвэрт задлах талаар авч үзэх болно.
хэлбэрийн тэгшитгэлийг квадрат тэгшитгэл гэдэг. a, b тоонуудыг үл мэдэгдэгчийн коэффициентүүд харин cсул гишүүн гэдэг. a≠0 байх илэрхийллийг квадрат гурван гишүүнт гэнэ.

Бүрэн бус квадрат тэгшитгэл

Хэрвээ [1] квадрат тэгшитгэлийн b эсхүл c нь тэгтэй бол түүнийг бүрэн бус квадрат тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодох нь их амар энгийн байдаг. Жишээ авч үзье.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Тэгшитгэлийн тэнцүүгийн тэмдгийн хоёр талд үл мэдэгдэгч сул гишүүдийг гаргавал

Бодлого.
тэгшитгэлийг бод.

Бодолт.
x -ийг хаалтны өмнө гаргавал хэлбэртэй болох бөгөөд үржвэр тэгтэй тэнцүү байхын тулд үржигдхүүнүүдийн нэг нь тэгтэй тэнцүү нөхцлийн дагуу байна. Энэ нь манай тэгшитгэлийн шийдүүд болно.

Бүтэн квадрат ялгах

Шийдийг олох томьёог санахгүй байсан ч ямар ч квадрат тэгшитгэлийг бодох боломжтой. Үүний тулд бүтэн квадрат ялгах хэрэгтэй. Энэ аргыг илэрхийлэл хураангуйлах, хувиргалт хийхэд маш өргөнөөр ашигладаг. Жишээ авч үзье.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Тэгшитгэлийн хоёр талд 9-ийг нэмэн өгье.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Бид шийдийн томьёо ашиглахгүй бодох гэж байгаа болохоор квадрат гурван гишүүнтээс бүтэн квадрат ялгах хэрэгтэй. Үүний тулд хоёр талыг 2-оор үржүүлээд нэмэлт оруулан өгвөл

болно. Шууд томьёо ялгаад нэмсэн /хассан ч байж болно/ зүйлээ тэнцүүгийн тэмдгийн нөгөө талд нэмэн өгч байгааг сайн анзаараарай. Одоо бид бүтэн квадрат ялгах боломжтой болсон тул цааш бодоход хүндрэлгүй.


 
Бодлого.
тэгшитгэлийг бод.

Бодолт.
болох тул тэгшитгэл шийдгүй.
 
Санамж:
Ийм аргаар тэгшитгэлийг бодохдоо квадрат гурван гишүүнтээс бүтэн квадрат ялгахад юу дутаж байгааг олон харахад л хангалттай.

Квадрат тэгшитгэлийн шийдийг олох томьёо

Бүтэн квадрат ялгах аргыг квадрат тэгшитгэлийн ерөнхий тохиолдол [1] -д хэрэглэж болно. Ингэснээр та бидний сайн мэдэх квадрат тэгшитгэлийн шийдийн томьёог гарган авна. Бидэнд байлаа гэж үзээд хоёр талыг нь a -гаар үржүүлье. Тэгвэл

болно.

тоог [1] тэгшитгэлийн дискриминант гэнэ. Дискриминантын утгаас хамааран доорх тохиолдлууд гарч ирдэг.

  1. D<0 бол [1] тэгшитгэл шийдгүй.
  2. D=0 бол [1] тэгшитгэл цорын ганц шийдтэй.
  3. D>0 бол [1] тэгшитгэл хоёр өөр шийдтэй.



[3] -томьёо нь [1] тэгшитгэлийн шийдийн томьёо бөгөөд харин [2] -томьёо нь D=0 байх үеийн тухайн тохиолдол болно.

Бодлого.
тэгшитгэлийг цорын ганц шийдтэй байлгах a -гийн хэдэн утга байгааг тодорхойл.

Бодолт.

Энэхүү энгийн бодлогод нэг жижигхэн асуудал байгаа. a=±1 гэсэн утгыг тусд нь авч үзэхийг мартаж болохгүй. Эдгээр утганд тэгшитгэл квадрат биш шугаман болон хувирна. a=1 үед тэгшитгэл x+1=0 болсноор x=-1 харин a=-1 үед тэгшитгэл x=1 гэсэн цорын ганц шийдүүдтэй. Харин a≠±1 үед өгөгдсөн тэгшитгэл квадрат болох бөгөөд дискриминант нь байна. Цорын ганц шийдтэй байх тохиолдол бол D=0 байх ёстой. Өөрөөр хэлбэл үед тэгшитгэл цорын ганц шийдтэй. Иймээс a -гийн 4 утганд тэгшитгэл цорын ганц шийдтэй болно.

Хариу.
4

Бодлого.
a параметрийн ямар утганд тэгшитгэл дор хаяхад нэг бүхэл шийдтэй байх вэ?

Бодолт.
Энд x, a -гийн үүргийг солих нь гол санаа юм. Өөрөөр хэлбэл x хувьсагчийг параметр харин a параметрийг хувьсагч болгох юм. Ингэвэл тэгшитгэл a гаас хамаарсан квадрат тэгшитгэл болох бөгөөд асуулт маань x параметрийн ямар бүхэл утганд тэгшитгэл утгатай бөгөөд тэдгээрийг олох болон хувирах юм. Дискриминантыг тодорхойлбол гарна. Эндээс зөвхөн x=0, x=-1, x=1 гэсэн гурван бүхэл утганд дискриминант эерэг гэдэг нь харагдаж байна. Эндээс

  • x=0 үед [4] тэгшитгэлээс a=0 гарна.
  • x=1 үед тэгшитгэлээс a=-1 ба a=-7/2 гарна.
  • x=-1 үед тэгшитгэлээс a=1 ба a=7/2 гарна.

Хариу
0; ±1; ±7/2

b=2k байх үеийн шийдийн хураангуй томьёо

b=2k үед томьёоны ашигтай хувилбар бий болдог. тэгшитгэлийг авч үзье. Түүний дискриминант болох бөгөөд энэ тохиолдолд томьёо [3] нь шилжинэ. Энэ бол [5] тэгшитгэлийн шийдийн томьёо юм. гэдгийг харгалзан үзвэл томьёог

хэлбэрээр бичиж болно. Энэхүү томьёо нь шалгалтын үед таны үнэт цагийг хэмнэх учир түүнийг мэдэж байхыг зөвлөе. Жишээ авч үзье.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Тэгшитгэлийн хувьд k=13 тул болно. Эндээс

гарна. [3] томьёогоор тэгшитгэлийг бодох нь илүү төвөгтэй гэдгийг та туршаад үзээрэй.  

Виетийн теорем

Квадрат тэгшитгэлийн шийдүүд түүний коэффициентүүдтай энгийн харьцаагаар холбоотой байдаг.

квадрат тэгшитгэл x1, x2 гэсэн шийдтэй гэж үзвэл (энд D=0 буюу x1=x2 тохиолдолч бас орно) томьёо хүчинтэй. Энэхүү томьёог Виетийн теорем гэдэг. Теорем тэгшитгэлийн шийдийг олох томьёонд шууд тооцоо хийх аргаар батлагдана. Тооцоо хийгээд үзвэл
болно.

Виетийн теоремийг x1 , x2 шийдийн аль нэг нь [1] тэгшитгэлийн шийд биш бол теоремийн аль нэгэн тэгшитгэл биелэгдэхгүй гэж тодорхойлж бас болно. Энэ тодорхойлолтыг квадрат тэгшитгэлийн шийдийг олох томьёогоор гарган авсан шийдүүдийг шалгахад их хэрэгтэй.
тэгшитгэлийг бодох хэрэгтэй боллоо гэе. Шийдийг олох хураангуй томьёог ашиглахад

болно. Үүний дараа хэдхэн секунд зарцуулан шийдийг Виетийн томьёогоор шалгах хэрэгтэй. За шалгаад үзье. шийдүүд -b/a , c/a тай тэнцүү байгаа болохоор зөв гэсэн үг. Хэрвээ Виетийн аль нэгэн томьёо буруу хариу өгсөн бол тэгшитгэлийн шийдийг олох үедээ хаана нэгтээ алдаа гаргасан гэсэн үг. Иймд энэхүү дүрмийн хэрэглэж занших хэрэгтэй. Учир нь квадрат тэгшитгэл илүү нарийн тооцоолол бүхий бодлогын нэг хэсэг болох нь ихээр тохиолддог тул шийдийг олох явцдаа алдаа гаргавал цаашхи бүх үйлдлүүд алдаатай болно. Ийм үед Виетийн теорем нь хамгаалалтын хэрэгсэл болон өгнө. Гэхдээ Виетийн теоремыг тооцооллын алдааг шалгах хэрэгсэл гэж ойлгож болохгүй. Түүнийг ашиглах хүрээ үүнээс хамаагүй өргөн. Тухайлбал Виетийн теоремоор тэгшитгэлийн шийдийг олох боломжтой.

Виетийн урвуу теорем.

a, b, c, x1 , x2  тоонууд харьцаагаар холбогдож байвал x1 , x2 тоонууд квадрат тэгшитгэлийн шийд болно. Жишээ авч үзье.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Нийлбэр нь 35, үржвэр нь 124 байх хоёр тоог олох гээд үзье. Эдгээр тоонууд бол 31 ба 4 юм. Виетийн урвуу теоремоор энэ тоонууд тэгшитгэлийн шийдүүд болно.

Бодлого.
тэгшитгэлийг бод.

Бодолт.
Тэгшитгэлийн шийдийг олох томьёогоор дискриминантыг тооцоход нилээд ажил болно. Энд тийм тооцоо хэрэггүй. x1=1 тэгшитгэлийн шийд гэдгийг амархан олно. Тэгвэл Виетийн теоремоор x2=-2014 гэдгийг тооцон олно.

Тэгшитгэл болгоныг Виетийн теоремоор бодоод байх боломжгүй. Зөвхөн дискриминантаас бүхэл язгуур гарах үед шийдийг сонгох боломжтой байдаг. Дискриминантаас иррационал тоо гарах үед шийд сонгох нь төвөгтэй бүр шийдгүй үед сонголт боломжгүй болно. Гэхдээ шалгалт дээр Виетийн теоремтой холбоотой нилээд төвөгтэй бодлогууд ихээр ирдэг. Хэдэн жишээ авч үзье.

Бодлого.
тэгшитгэлийн хувьд утгыг ол.

Бодолтыг үзэх

Бодлого
Хэрвээ x1, x2 нь тэгшитгэлийн шийд бол a параметрийн ямар утганд хамгийн бага утгатай байх вэ?

Бодолтыг үзэх

Бодлого
Хэрвээ x1, x2 нь тэгшитгэлийн шийд бол шийдтэй квадрат тэгшитгэл хэлбэртэй байх ба a, b, c -г ол.

Бодолтыг үзэх

Бодлого
x1 , x2 , x3 , x4 тоонууд x1 < x2 < x3  < x4 дараалалтай бөгөөд тэгшитгэлийн өөр өөр шийдүүд бол илэрхийллийн утгыг ол.

Бодолтыг үзэх

Квадрат гурван гишүүнтийг үржвэрт задлах

квадрат тэгшитгэлийн шийдүүдийг квадрат гурван гишүүнтийн шийд гэж бас нэрлэдэг. Квадрат гурван гишүүнтийн шийдийг мэдэж байвал түүнийг үржвэрт задалж болно.  x1, x2 ийг гурван гишүүнтийн шийдүүд гэвэл тэнцэл хүчинтэй байна.
Тэнцлийг баталъя. Үүний тулд тэнцлийн баруун талын хаалтыг задлаад Виетийн теоремийг хэрэглэвэл тэнцэл гарснаар батлагдлаа.
Бодлого.
квадрат гурван гишүүнтийг үржвэрт задал.
Бодолт.
Гурван гишүүнтийг квадрат тэгшитгэл болгон бодвол байна. Одоо гурван гишүүнтийг үржвэрт задлах томьёоны дагуу
болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3291 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

  Нээгдсэн тоо: 4657 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

  Нээгдсэн тоо: 225 Нийтийн

Арифметикт суралцаж буй сурагчид арифметикийн үндсэн дөрвөн үйлдлийн дүрэм болоод үйлдлүүдийг оновчтой хурдан хийх аргыг маш сайн эзэмших хэрэгтэй. Эдгээр дүрэм, аргачлалууд алгебрийн илэрхийллийн хувиргалтуудын суурь болдог гэдгийг санаарай. Дүрмүүд энгийн тул сурагчид болон эцэг эхчүүд нэг их анхаарахгүй өнгөрөөснөөс болоод алгебр орж эхлэхэд суурь дүрмүүдээ мэдэхгүйгээс үүдэн хоцрогдол үүсэх цаашлаад математикийн хичээлд дургүй болох шалтгаан ч болох эрсдэлтэй.

  Нээгдсэн тоо: 7817 Бүртгүүлэх

x нь a д тэмүүлэх үед дурын ε>0 хувьд нөхцлийг хангах ε тооноос хамаарсан δ(ε) тоо олдож байвал L тоог f(x) функцын хязгаар гэнэ.
гэж тэмдэглэнэ.
Энэ тодорхойлолт нь x нь a -д ойртох тутам f(x) функцын утга нь L тоонд хязгааргүй ойртоно гэдгийг илэрхийлж байна. Хязгаарын геометр утга нь дурын ε>0 хувьд x нь (α-δ, α+δ) мужид байхад функцын утга нь мужид орших δ тоог олж болно. Тодорхойлолт ёсоор функцын аргумент нь зөвхөн a -д ойртдог болохоос биш энэ утгыг авахгүй гэдгийг анхааралдаа авах хэрэгтэй. Энийг ямар ч функцын хязгаарыг олохдоо түүний тасралтын цэг дээр санаж байх хэрэгтэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 58

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 90

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 85

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 203

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 244

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 253

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 296

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 285

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 368

 
Энэ долоо хоногт

функцийн интервал дахь хамгийн бага утгыг ол.

Нээгдсэн тоо : 855

 

Зөв дөрвөн өнцөгт пирамидын өндөр 4. Хажуу ирмэг суурийн хавтгайд 30 градусын өнцгөөр налсан бол пирамидын хажуу ирмэгийг ол.

Нээгдсэн тоо : 1848

 

бол M·N=?

Нээгдсэн тоо : 1161