Виетийн теорем

Хүмүүс математикийг зөвхөн тоотой холбон ойлгодогоос тоо бодлого, тооны хичээл гэж ч ярьж байдаг. Гэтэл тоо бодох нь зөвхөн математикт ч биш бүхий л хичээлд байдаг шүү дээ. Жишээ нь хими, фикик, түүх, газарзүй гэх мэтээр. Тэгэхээр бусад хичээлийн бодлого, тооцоонууд математикийн тооцоо биш болж таарах уу. Мэдээж үгүй бүхий л тооцоо, бодлогод математикийн ухаанд мөрддөг дүрмийг л ашиглана. Математик хүмүүст тоо бодох гэхээсээ илүү хийсвэрлэн сэтгэх, тунгаан бодох, ухан ойлгох чадварыг өгдөг. Иймээс л математикийн ухааныг бүх ухааны хаан гээд байгаа юм. Математикийн бүх зүйлүүд бие биетэйгээ нягт холбоотой, нэг нь нөгөөгөөс урган гардаг учраас буруу, худлаа зүйл байж болдоггүй нь түүнийг нэг талаас амархан нөгөө талаас хүнд хичээл болгодог.

Математикийн хичээлийн агуулгад багтсан сэдвүүдийг эхнээс нь зөв, сайн ойлгосон бол дараагийн зүйлүүд өмнөхөөсөө урган гарах эсхүл түүнийг ашигладаг тул амархан ойлгогдоно. Эсрэгээсээ суурь ухагдхуунуудыг мэдэхгүй бол шинэ зүйлийг сурах нь бүү хэл ойлгоход ч хүнд болон ирдэг. Иймээс математикийн хичээлийг бүр сууриас нь сайн ойлгон үзэхийг зөвлөе.
Хичээлээр алгебрын тэгшитгэлийг бодоход их хэрэг болдог Виетийн теоремийг авч үзье.

Теорем гэж юуг хэлэх вэ?

Математикийн ямар нэгэн бодлогыг хурдан амар шийдэх зүй тогтолыг хэн нэгэн оллоо гэж бодъё. Үүнийг шууд нээлт гэж үзэж болохгүй. Учир нь тухайн хүний олсон зүй тогтол зөвхөн тодорхой тохиолдолд ажиллаад харин өөр тохиолдолд ажиллахгүй эсхүл бүр буруу ажиллаж ч болно.     
Иймээс өөрийн нээлтээ бусдад ойлгуулахын тулд нээсэн зүй тогтолоо нотолгоо хэлбэрээр тодорхойлоод дараа нь түүнийг хөдлөшгүй баримтаар батлах шаардлагатай.
Зүй тогтолын нотолгоо хэлбэрийн тодорхойлолтыг теорем гэж нэрлэдэг. Харин түүний баталгаа нь ямарч маргаан үүсгэхгүй бодон олсон үндэслэл, тооцооноос бүрдэнэ.
Жишээ нь "Энгийн бутархайн хүртвэр, хуваарийг тэгээс ялгаатай ямар нэгэн тоогоор үржүүлэхэд бутархайн утга өөрчлөгдөхгүй" гэдгийг теорем гэж хэлж болно. Хэрвээ тэгээс ялгаатай гэсэн үгийг хасвал энэ нотолгоо нь үржих тоо тэг байхад ажиллахгүй болно. Бутархайн хуваарийг тэгээр үржиж, хуваавал бутархай утгатгүй болдог гэдгийг ч бас нэгэн теорем гэж үзэж болно.
Дээрх нотолгоог математикийн хэлээр бичвэл a/b бутархайн хүртвэр хуваарийг c≠0 тоогоор үржүүлбэл a/b=ac/bc.
a/b=ac/bc тэнцэлийг батлахын тулд порпорцийн үндсэн чанарыг ашиглавал болно.
Үржигдхүүнүүдийн байрыг соливол үржвэр өөрчлөгдөхгүй аксиомоор байна. a/b=ac/bc тэнцэл порпорц. Харин порпорц гэдэг нь хоёр харьцааны тэнцэл гэдгээс a/b нь ac/bc тэнцүү нь батлагдана.

Виетийн теорем.

Францийн математикч Франсуа Виет эмхэтгэсэн квадрат тэгшитгэлийн коэффициентүүд болон шийдүүд хоорондын сонирхолтой зүй тогтолыг нээсэн. Энэхүү уялдаа холбоог

Эмхэтгэсэн /бүрэн/ x2 + bx + c = 0 квадрат тэгшитгэлийн шийдүүдийн нийлбэр тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициентийг сөрөг тэмдэгтэй авсантай харин шийдүүдийн үржвэр сул гишүүнтэй тэнцүү гэсэн теоремоор тодорхойлжээ.

Өөрөөр хэлбэл эмхэтгэсэн x2 + bx + c = 0 квадрат тэгшитгэл байгаад x1, x2 нь түүний шийд бол

тэнцлүүдийн систем биелэнэ гэсэн үг.

Виетийн теоремийг тэгшитгэл дээр харцгаая. Тэгшитгэл ямар шийдүүдтэйг мэдэхгүй ч тэдгээрийг x1, x2 гэж үзье. Тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициент 4 харин сул гишүүн 3 байгаа. Тэгвэл теоремоор
систем гарч ирнэ. Системийг бодоод тэгшитгэлийн шийдүүдийг олж болно. Гэхдээ эмхэтгэсэн квадрат тэгшитгэлийн шийдийг олох томьёогоор шийдүүдийг олоод теоремийг шалгая. Томьёоны дагуу шийдүүд гарна. Теоремийг шалгахын тулд шийдүүдийг тэнцэлүүдийн системд оруулан шалгавал гэж гарснаар тэгшитгэлийн хувьд теорем үнэн байна.

Санамж: Нэгдүгээр эрэмбийн үл мэдэгдэгч гэдгийг 1 зэрэгтэй x харин сул гишүүн гэдгийг x -гүй гишүүн гэж ойлгоорой. Үүнийг бид квадрат гурван гишүүнт сэдвээс мэдэн авдаг. Энэ нь математикт бүх зүйлүүд өөр хоорондоо уялдаатай гэдгийн баталгаа. Эдгээр ойлголтыг мэдэхгүй хүнд теоремийн тодорхойлолтыг ойлгоход хүнд болоод ирдэг тул сурагчид x2 + bx + c = 0 тэгшитгэлийн b, c гэх мэтээр автоматаар цээжлэх гэдгээс болоод бодлого бодоход асуудалд ордогийг сануулъя. Томьёоны бичилтэд эмхэтгэсэн кавадрат тэгшитгэлийг ямарч байдлаар бичсэн байж болно. Хичээлийн материалд гэхэд л Виетийн теорем, тэгшитгэлийн шийдийг олох томьёо хоёрт эмхэтгэсэн квадрат тэгшитгэлийг хоёр янзаар буюу коэффициентүүдийг өөр үсгүүдээр тэмдэглэсэн байгаа.

Теоремийг x2 − 2x + 4 = 0 тэгшитгэл дээр авч үзье. Теоремоор
биелэх ёстой. Системд буй тэнцлүүдийг харвал нийлбэр нь 2, үржвэр нь 4 байх тоонууд байхгүй гэдгээс систем шийдгүй тул анхдагч тэгшитгэл шийдгүй болж таарна. Үүнийг томьёогоор шалгая. -3 -аас язгуур гарахгүй тул тэгшитгэл үнэхээр шийдгүй нь батлагдана. Энэ тохиолдолд ч Виетийн теорем ажиллаж байна.

Санамж: Коэффициент, сул гишүүдийн тэмдгийг оруулж байгаад анхаарна уу. Тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициент -2 тул түүнийг хасах тэмдэгтэй авбал 2 болж байгааг сайн тогтоогоорой.

x2 − 5x + 6 = 0 тэгшитгэлийг аваад үзье. Теоремоор
систем үүснэ. Хоёр шийдийн үржвэр 6 байхын тулд шийдүүд хоёулаа эерэг эсхүл хоёулаа сөрөг тоо байх ёстой нь 2 -р тэнцлээс харагдана. Харин 1 -р тэнцлээс шийдүүд сөрөг тоонууд байж болохгүй гэдэг нь тодорхой. Иймээс тэгшитгэлийн шийдүүд эерэг тоонууд байх бөгөөд систем дэхь тэнцлүүдийг хангах тоонууд 2 ба 3 гэдэг нь амархан харагдана. Эндээс тэгшитгэл x1=2; x2=3 гэсэн шийдүүдтэй нь шууд олдоно. Үүнийг өөрсдөө шалгаарай.

Санамж: Зарим энгийн тэгшитгэл Виетийн теоремоор тэгшитгэлийг бодохгүйгээр шийдийг олж боломжтой. Шийдүүдийн хувилбар олон байхад энэ арга үр дүн муутайг санаарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 8492 Нийтийн

Тэгш өнцөгт гурвалжин дахь порпорционал хэрчмүүдийн хоорондын харьцааг тогтоон авах нь их хэрэгтэй. Тэгш өнцөгт гурвалжны гипотенузэд буулгасан өндөр түүнийг катетуудын проекц гэж нэрлэгдэх хэрчмүүдэд хуваадаг.

Тэгш өнцөгт гурвалжны шинжүүд

  1. Гипотенузэд буулгасан өндөр нь гипотенуз дээрх катетуудын проекцуудын дундаж порпорционалтай тэнцүү.
  2. Катет нь гипотенуз ба энэхүү катетын гипотенуз дээрх проекцын дундаж порпорционалтай тэнцүү.

  Нээгдсэн тоо: 6536 Бүртгүүлэх

Шулуун ба хавтгайн паралел байх шинжүүд

  • Хавтгайд үл орших шулуун нь хавтгай дээр байгаа ямар нэгэн шулуунтай паралел байвал энэ шулуун нь хавтгайтай паралел байна.
  • Хэрвээ шулуун ба хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

Хавтгайнууд паралел байх шинжүүд

  • Нэг хавтгай дээрх огтлолцсон хоёр шулуун нь нөгөө хавтгайн огтлолцсон хоёр шулуунтай паралел байвал шулуунуудыг агуулж байгаа хавтгайнууд паралел байна.
  • Хэрвээ хоёр хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

  Нээгдсэн тоо: 2037 Төлбөртэй

Тоон болон үсгэн илэрхийллүүд нь « = » тэмдгээр холбогдож байвал тэдгээрийг тэнцэл үүсгэлээ гэнэ. Дурын тоон тэнцэл мөн түүнчлэн үсгийн оронд орлуулж болох бүх тоон утгуудад зөв байх дурын үсгэн тэнцлүүдийг адитгал гэнэ.

Жишээ

  • 4 · 7 + 2 = 30 тоон тэнцэл нь адитгал юм.
  • үсгэн тэнцэл нь бас адитгал. Учир нь үсгүүдийн бүх утганд тэнцэл биелнэ.

  Нээгдсэн тоо: 1203 Төлбөртэй

Геометрийн ухагдхуунуудын буруу болоод дутуу ойлголтоос үүдэн бодлого бодоход үүсдэг ихэнх асуудал урган гарч ирдэг. Бодлогын бодолтуудад ухагдхуун бүрийг тайлбарлаад байх төвөгтэй тул тэдгээрийг багцлан хичээл хэлбэрээр хүргэж байгаа болно. Шулууны шинжээр нэг хавтгай дээрх хоёр шулуун бие биетэйгээ нэг цэгт огтлолцон эсхүл паралелаар буюу огтлолцохгүйгээр байрлана гэдгийг Шулуун хичээлд үзсэн. Хичээлээр огтлолцсон шулуун гэж юуг хэлэх огтлолцлын хэлбэрийн тухай үзнэ.

Жич: Хүмүүс танхимын сургалт байгаа эсэх талаар их асуудаг. Манай сайтын хувьд танхимын сургалт байхгүй. Танхимын сургалт онлайн сургалтаас хэд дахин үнэтэйгээс гадна сайт дээрх хичээлүүдээс илүүг өгнө гэдэг юу л бол. Одоохондоо манай хүмүүс нэгэн кинонд гардаг шиг цаасан мөнгөний оронд зоосоо авна гээд байдагтай л адил онлайн сургалтад нэг сайн дасахгүй байх шиг. Яваандаа шинэ зүйлд дасаад ирэхээр яах гэж нэг ангид цуглардаг байсан юм болоо гэж л ярих байх. Иймээс шинэ зүйл рүү аль болохоор эрт орно өгөөжийг нь бусдаас түрүүлэн хүртэнэ гэдгийг баттай хэлье.

Үүнээс гадна яаж хурдан сурах талаар их асуудаг. Энэ бол цэвэр таниас хамаарах зүйл. Хэрвээ та машин техник байсан бол тархи, толгойг солиод бүгдийг мэддэг хүн болгож болох ч одоохондоо шийдэж чадаагүй ажил. Хамгийн гол зүйл таны хүсэл, зориг, тэсвэр, тэвчээр. Үүнд бэлтгэхэд сайтын үндсэн зорилго оршино. Хүн өөрөө нэг зүйлийг бие даан судлаад ойлгосны дараа хичнээн таашаал авдагийг та мэдрэх хэрэгтэй. Тун удалгүй бараг бүх зүйл түүний дотор хамгийн түрүүнд суралцах ажил бүгд онлайнд шилжинэ гэдгийг хүмүүс мэдэрсэн болов уу.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 39

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 63

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 68

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 69

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 87

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 102

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 78

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 63

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 84

 
Энэ долоо хоногт

Арифметик прогресийн 5-р гишүүн 8,4 харин 10-р гишүүн 14,4 тэнцүү бол энэ прогресийн 22-р гишүүнийг ол.

Нээгдсэн тоо : 1086

 

Дарааллын эхний n гишүүний нийлбэр томьёогоор өгөгджээ. Хэрэв энэ дараалал геометр прогресс бол q -г ол, арифметик прогресс бол d -г ол.

Нээгдсэн тоо : 780

 

бол M·N=?

Нээгдсэн тоо : 1069