Виетийн теорем

Хүмүүс математикийг зөвхөн тоотой холбон ойлгодогоос тоо бодлого, тооны хичээл гэж ч ярьж байдаг. Гэтэл тоо бодох нь зөвхөн математикт ч биш бүхий л хичээлд байдаг шүү дээ. Жишээ нь хими, фикик, түүх, газарзүй гэх мэтээр. Тэгэхээр бусад хичээлийн бодлого, тооцоонууд математикийн тооцоо биш болж таарах уу. Мэдээж үгүй бүхий л тооцоо, бодлогод математикийн ухаанд мөрддөг дүрмийг л ашиглана. Математик хүмүүст тоо бодох гэхээсээ илүү хийсвэрлэн сэтгэх, тунгаан бодох, ухан ойлгох чадварыг өгдөг. Иймээс л математикийн ухааныг бүх ухааны хаан гээд байгаа юм. Математикийн бүх зүйлүүд бие биетэйгээ нягт холбоотой, нэг нь нөгөөгөөс урган гардаг учраас буруу, худлаа зүйл байж болдоггүй нь түүнийг нэг талаас амархан нөгөө талаас хүнд хичээл болгодог.

Математикийн хичээлийн агуулгад багтсан сэдвүүдийг эхнээс нь зөв, сайн ойлгосон бол дараагийн зүйлүүд өмнөхөөсөө урган гарах эсхүл түүнийг ашигладаг тул амархан ойлгогдоно. Эсрэгээсээ суурь ухагдхуунуудыг мэдэхгүй бол шинэ зүйлийг сурах нь бүү хэл ойлгоход ч хүнд болон ирдэг. Иймээс математикийн хичээлийг бүр сууриас нь сайн ойлгон үзэхийг зөвлөе.
Хичээлээр алгебрын тэгшитгэлийг бодоход их хэрэг болдог Виетийн теоремийг авч үзье.

Теорем гэж юуг хэлэх вэ?

Математикийн ямар нэгэн бодлогыг хурдан амар шийдэх зүй тогтолыг хэн нэгэн оллоо гэж бодъё. Үүнийг шууд нээлт гэж үзэж болохгүй. Учир нь тухайн хүний олсон зүй тогтол зөвхөн тодорхой тохиолдолд ажиллаад харин өөр тохиолдолд ажиллахгүй эсхүл бүр буруу ажиллаж ч болно.     
Иймээс өөрийн нээлтээ бусдад ойлгуулахын тулд нээсэн зүй тогтолоо нотолгоо хэлбэрээр тодорхойлоод дараа нь түүнийг хөдлөшгүй баримтаар батлах шаардлагатай.
Зүй тогтолын нотолгоо хэлбэрийн тодорхойлолтыг теорем гэж нэрлэдэг. Харин түүний баталгаа нь ямарч маргаан үүсгэхгүй бодон олсон үндэслэл, тооцооноос бүрдэнэ.
Жишээ нь "Энгийн бутархайн хүртвэр, хуваарийг тэгээс ялгаатай ямар нэгэн тоогоор үржүүлэхэд бутархайн утга өөрчлөгдөхгүй" гэдгийг теорем гэж хэлж болно. Хэрвээ тэгээс ялгаатай гэсэн үгийг хасвал энэ нотолгоо нь үржих тоо тэг байхад ажиллахгүй болно. Бутархайн хуваарийг тэгээр үржиж, хуваавал бутархай утгатгүй болдог гэдгийг ч бас нэгэн теорем гэж үзэж болно.
Дээрх нотолгоог математикийн хэлээр бичвэл a/b бутархайн хүртвэр хуваарийг c≠0 тоогоор үржүүлбэл a/b=ac/bc.
a/b=ac/bc тэнцэлийг батлахын тулд порпорцийн үндсэн чанарыг ашиглавал болно.
Үржигдхүүнүүдийн байрыг соливол үржвэр өөрчлөгдөхгүй аксиомоор байна. a/b=ac/bc тэнцэл порпорц. Харин порпорц гэдэг нь хоёр харьцааны тэнцэл гэдгээс a/b нь ac/bc тэнцүү нь батлагдана.

Виетийн теорем.

Францийн математикч Франсуа Виет эмхэтгэсэн квадрат тэгшитгэлийн коэффициентүүд болон шийдүүд хоорондын сонирхолтой зүй тогтолыг нээсэн. Энэхүү уялдаа холбоог

Эмхэтгэсэн /бүрэн/ x2 + bx + c = 0 квадрат тэгшитгэлийн шийдүүдийн нийлбэр тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициентийг сөрөг тэмдэгтэй авсантай харин шийдүүдийн үржвэр сул гишүүнтэй тэнцүү гэсэн теоремоор тодорхойлжээ.

Өөрөөр хэлбэл эмхэтгэсэн x2 + bx + c = 0 квадрат тэгшитгэл байгаад x1, x2 нь түүний шийд бол

тэнцлүүдийн систем биелэнэ гэсэн үг.

Виетийн теоремийг тэгшитгэл дээр харцгаая. Тэгшитгэл ямар шийдүүдтэйг мэдэхгүй ч тэдгээрийг x1, x2 гэж үзье. Тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициент 4 харин сул гишүүн 3 байгаа. Тэгвэл теоремоор
систем гарч ирнэ. Системийг бодоод тэгшитгэлийн шийдүүдийг олж болно. Гэхдээ эмхэтгэсэн квадрат тэгшитгэлийн шийдийг олох томьёогоор шийдүүдийг олоод теоремийг шалгая. Томьёоны дагуу шийдүүд гарна. Теоремийг шалгахын тулд шийдүүдийг тэнцэлүүдийн системд оруулан шалгавал гэж гарснаар тэгшитгэлийн хувьд теорем үнэн байна.

Санамж: Нэгдүгээр эрэмбийн үл мэдэгдэгч гэдгийг 1 зэрэгтэй x харин сул гишүүн гэдгийг x -гүй гишүүн гэж ойлгоорой. Үүнийг бид квадрат гурван гишүүнт сэдвээс мэдэн авдаг. Энэ нь математикт бүх зүйлүүд өөр хоорондоо уялдаатай гэдгийн баталгаа. Эдгээр ойлголтыг мэдэхгүй хүнд теоремийн тодорхойлолтыг ойлгоход хүнд болоод ирдэг тул сурагчид x2 + bx + c = 0 тэгшитгэлийн b, c гэх мэтээр автоматаар цээжлэх гэдгээс болоод бодлого бодоход асуудалд ордогийг сануулъя. Томьёоны бичилтэд эмхэтгэсэн кавадрат тэгшитгэлийг ямарч байдлаар бичсэн байж болно. Хичээлийн материалд гэхэд л Виетийн теорем, тэгшитгэлийн шийдийг олох томьёо хоёрт эмхэтгэсэн квадрат тэгшитгэлийг хоёр янзаар буюу коэффициентүүдийг өөр үсгүүдээр тэмдэглэсэн байгаа.

Теоремийг x2 − 2x + 4 = 0 тэгшитгэл дээр авч үзье. Теоремоор
биелэх ёстой. Системд буй тэнцлүүдийг харвал нийлбэр нь 2, үржвэр нь 4 байх тоонууд байхгүй гэдгээс систем шийдгүй тул анхдагч тэгшитгэл шийдгүй болж таарна. Үүнийг томьёогоор шалгая. -3 -аас язгуур гарахгүй тул тэгшитгэл үнэхээр шийдгүй нь батлагдана. Энэ тохиолдолд ч Виетийн теорем ажиллаж байна.

Санамж: Коэффициент, сул гишүүдийн тэмдгийг оруулж байгаад анхаарна уу. Тэгшитгэлийн нэгдүгээр эрэмбийн үл мэдэгдэгчийн коэффициент -2 тул түүнийг хасах тэмдэгтэй авбал 2 болж байгааг сайн тогтоогоорой.

x2 − 5x + 6 = 0 тэгшитгэлийг аваад үзье. Теоремоор
систем үүснэ. Хоёр шийдийн үржвэр 6 байхын тулд шийдүүд хоёулаа эерэг эсхүл хоёулаа сөрөг тоо байх ёстой нь 2 -р тэнцлээс харагдана. Харин 1 -р тэнцлээс шийдүүд сөрөг тоонууд байж болохгүй гэдэг нь тодорхой. Иймээс тэгшитгэлийн шийдүүд эерэг тоонууд байх бөгөөд систем дэхь тэнцлүүдийг хангах тоонууд 2 ба 3 гэдэг нь амархан харагдана. Эндээс тэгшитгэл x1=2; x2=3 гэсэн шийдүүдтэй нь шууд олдоно. Үүнийг өөрсдөө шалгаарай.

Санамж: Зарим энгийн тэгшитгэл Виетийн теоремоор тэгшитгэлийг бодохгүйгээр шийдийг олж боломжтой. Шийдүүдийн хувилбар олон байхад энэ арга үр дүн муутайг санаарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3146 Төлбөртэй

Хавтгайн геометрийн дүрсүүдээс хамгийн өргөн ашигладаг дүрс бол гурвалжин. Гурвалжин түүний чанар, шинж, теоремуудыг сайн ойлгосон байхад ЕБС -ийн геометрийн бодлогуудыг бодоход ихээхэн хөнгөн болдог. Энэ удаа сурагчид сайн мэддэггүй гурвалжны гадаад өнцгийн тухай ойлголтыг танилцуулъя.
Гурвалжны гадаад өнцөг гэдэг нь гурвалжны дурын дотоод өнцөгтэй хамар өнцгийг хэлнэ.

  Нээгдсэн тоо: 1293 Нийтийн

Алгебрт тоон эсхүл координатийн тэнхлэг ойлголт чухал үүрэгтэй. Иймээс хичээлээр тоон тэнхлэг ухагдхууны талаар авч үзье.
Эхлэлийн цэг, эерэг чиглэл болон нэгж хэрчмийг тэмдэглэсэн шулууныг координатийн буюу тоон тэнхлэг гэнэ. O эхлэлийн цэгтэй эерэг чиглэлийг сумаар заасан доорх шулууныг авч үзье.

  Нээгдсэн тоо: 3915 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

  Нээгдсэн тоо: 8027 Төлбөртэй

Математикт илэрхийлэл гэж юуг хэлэх вэ? Илэрхийлэлд хувиргалт хийх ямар хэрэгтэй вэ? гэсэн асуултууд танд сонин санагдаж магад. Учир нь эдгээр ойлголтууд бол математикийн үндэс юм. Математик бүхэлдээ илэрхийлэл, тэдгээрийн хувиргалтаас бүрдэнэ. Ойлгомжгүй байна уу. Тайлбарлая. Маш нүсэр бичлэгтэй, төвөгтэй жишээ байлаа гэе. Та математикт сайн тул айгаад байх зүйлгүй гэж бодъё. Тэгвэл шууд хариуг нь хэлж чадах уу? Үгүй шүү дээ.
Та энэ жишээг бодох л болно. Мэдээжээр ямар нэгэн дүрмийн дагуу алхам алхамаар жишээг хувирган эмхэтгэл хийнэ. Өөрөөр хэлбэл илэрхийлэлд хувиргалт хийнэ. Эдгээр хувиргалтуудыг хир сайн хийх нь таныг математикт төчнөөн сайныг илтгэнэ. Хэрвээ та хувиргалтыг зөв хийж чадахгүй бол математикт та юу ч хийж дийлэхгүйд хүрнэ. Ийм байдалд орохгүйн тулд илэрхийллийн тухай энэ удаа авч үзье. Илэрхийллийн хувиргалт хийж сурах нь бодлого бодох үндэс. Үүнийг сураагүй бол ямарч бодлогыг бодох талаар санаад ч хэрэггүй. Тэгэхлээр эхлээд математикт илэрхийлэл гэж юуг ойлгох, тоон болон алгебрын илэрхийлэл гэж юу болохыг тодруулъя.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124