Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2514 Төлбөртэй

Нэг хавтгайд байрлах хоёр шулууныг хичнээн ч үргэлжлүүлсэн бие биетэйгээ огтлолцохгүйгээр байрласан бол тэдгээрийг паралел шулуунууд гэдэг.

Шулуунууд паралел гэдгийг заахдаа || тэмдэгтийг ашигладаг. Иймээс бичлэгийг AB шулуун CD шулуунтай паралел, a шулуун b шулуунтай паралел гэж уншин ойлгож сураарай.

  Нээгдсэн тоо: 527 Бүртгүүлэх

Тоонуудын нэмэх үйлдэл ашигладаг аргачлалуудын талаар авч үзье.

Нэг оронтой тоонуудыг нэмэх

Нэг оронтой тоонуудын нийлбэрийг олохдоо

arif03_07_01

нэмэх хүснэгтийг ашиглан хийдэг. Дээрх хүснэгтийг 1 -ээс 9 хүртэлх дурын хоёр тооны нийлбэр болон хасагдагч нь 18 тай тэнцүү буюу бага хасагч нь 1 -ээс 9 хүртэлх тоонуудын ялгаварыг олоход ашиглана.

  Нээгдсэн тоо: 4368 Төлбөртэй

Тригнометрийн хувиргалт, тэгшитгэл, тэнцэтгэл биш гээд тригнометрийн бодлогод хувиргалтын томьёонуудыг өргөнөөр ашигладаг. Эдгээр томьёонууд нилээд олон тооны дээр өөр хоорондоо их төстэй байдаг нь сурагчдыг төөрөгдөлд оруулах явдал ихээр гардаг. Томьёонуудыг цээжилнэ гэвэл нилээд хэцүү тэгээд ч алдах нь гарцаагүй. Энэ хичээлээр хувиргалтын томьёог цээжлэхгүйгээр хэрхэн зөв гаргах талаар авч үзэх болно. Сайн анхааралтай уншаад аргачлалыг тогтоон аваарай.
Хувиргалтын томьёонуудын талаар ярилцахаас өмнө зарим нэгэн ухагдхууны талаар тохиролцох хэрэгтэй. Тэгэхлээр f(x) - гэдгийг sinx, cosx, tgx, ctgx функцуудын аль нэг нь гэе. cof(x) -ээр f(x) функцын кофункцыг тэмдэглэе. Кофункц гэдэг нь синусын хувьд косинус, косинусын хувьд синус харин тангенсийн хувьд котангенс, котангенсийн хувьд тангенс гэсэн үг юм. Илүү ойлгомжтойгоор

  Нээгдсэн тоо: 2557 Бүртгүүлэх

Ямар нэгэн муруй хавтгай дээр /Зур. 94/ A, B, C гэсэн гурван цэг байна гэж үзээд эдгээр цэгүүдийг дайруулан P огтлогч хавтгайг татъя. B, C цэгүүдийг A цэг рүү хоёр өөр чиглэлээр хөдөлгөе. Тэгвэл P хавтгай нь B, C цэгийг хаана авсан, A цэг рүү явж байгаа замаас хамаарахгүйгээр ямар нэгэн Q хязгаарын байрлал руу тэмүүлэх болно. Q хавтгайг A цэг дэх шүргэгч хавтгай гэнэ.
Гадаргуун зарим цэгүүд шүргэгч хавтгайгүй байж болно. Жишээ нь: Конусын оройд шүргэгч хавтгай байхгүй.

Бөөрөнхий гадаргуун шүргэгч P хавтгай нь /Зур. 95/ шүргэлтийн цэг A -д татсан OA радиустай перпендикуляр байна. Бөөрөнхий гадаргуу ба шүргэгч хавтгай нь шүргэлтийн цэг гэсэн ганцхан ерөнхий цэгтэй байдаг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 253

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 337

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 305

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 401

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 448

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 475

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 557

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 632

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 668

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1413

 

тэгшитгэл бод.

Нээгдсэн тоо : 1019

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1063