Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 914 Нийтийн

Сурагчид арифметик үйлдэлд суралцаж байхдаа үйлдлийн бүрдүүлэгчдийн нэрийг сайн тогтоолгүй өнгөрөх гээд байдаг. Энэ нь алсдаа дунд болоод ахлах ангийн шалгалт, шүүлэгт ирж буй бодлогын нөхцлийг ойлгоход тодорхой хүндрэлийг үүсгэдэг. Жишээ нь бодлогын нөхцөлд нэмэгдхүүн, хасагч, ялгавар, нийлбэр гэх мэтээр оноосон нэрийг ашигласан байхдаг. Хэрвээ эдгээр нэрүүд юуг хэлж байгааг мэдэхгүй бол нөхцлийг ойлгоход хэцүү. Энэ мэт хайнга хандлагаас болоод сурагчид математикийн хичээлд дургүй болох хандлагатай болж ирдэгийг сануулъя.    

  Нээгдсэн тоо: 364 Бүртгүүлэх

Нийлбэр хоёроос дээш бүрдүүлэгч буюу нэмэгдхүүнүүүдтэй бол тооцоог хялбар  болгох үүднээс тэдгээрийг бүлэглэх аргыг өргөнөөр ашигладаг. Энэ нь нэмэх үйлдлийн байр солих, нэгтгэн нэмэх дүрмүүдийг хослуулан хэрэглэж байгаа аргачлал болохоос шинэ дүрэм биш.
Бүрдүүлэгчдийг бүлэглэнэ гэдэг нь тэдгээрийг хаалт ашиглан нэгтгэх аргачлал юм. Аргачлалыг нийлбэрийн тооцоог энгийн болгох зорилгоор ашигладаг тул нэмэгдхүүнүүдийн байрлал голлон өөрчлөгдөнө.

  Нээгдсэн тоо: 1505 Төлбөртэй

Гурвалжны төстэйн шинжүүдийг геометрийн ихэнх бодлогод өргөнөөр ашигладаг тул шинжүүдийг маш сайн ойлгон цээжээр мэддэг байх хэрэгтэй.
Төстэй гурвалжингууд гэдэг нь бүх өнцгүүд нь тэнцүү, нэг гурвалжны бүх талууд нөгөөгийнхөө төстэй талуудаас нэг ижил тоогоор урт эсхүл богино байх гурвалжингуудыг хэлнэ. Өөрөөр хэлбэл гурвалжингуудын бүх өнцгүүд тэнцүү ба төстэй талууд нь пропорционал бол тэдгээр нь төстэй гурвалжинууд.

  Нээгдсэн тоо: 23899 Нийтийн

Хэрчмүүдээр бүрэн хаагдсан хавтгай дүрсийг олон өнцөгт гэнэ. Өнцгийн тооноосоо хамааран олон өнцөгт нь гурвалжин, дөрвөлжин, таван өнцөгт, зургаан өнцөгт гэх мэтээр байж болно. /Зур. 17/ дээр ABCDEF гэсэн зургаан өнцөгтийг үзүүлсэн байна. A, B, C, D, E, F цэгүүдийг олон өнцөгтийн орой гэнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 211

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 295

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 252

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 354

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 402

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 425

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 489

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 561

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 587

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1103

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 307