Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 35920 Нийтийн

Геометрийг ойлгоход өнцөг ойлголт ихээхэн чухал. Бодлогын нөхцөлд өнцгүүдийн төрлүүд их орж ирдэг тул тэдгээрийг нэр, хэлбэр, шинжээр нь мэдэж байх хэрэгтэй. Өнцгүүд өөрийн хэмжээнээс хамааран тусдаа нэрүүдтэй.

Геометрийн ухагдхуунуудыг сайн ойлгохгүйгээр бодлогод тэдгээрийг ашиглах бараг боломжгүй тул Хавтгайн геометр хичээлийн багцыг үзэхийг зөвлөе.

  Нээгдсэн тоо: 4086 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

  Нээгдсэн тоо: 2663 Төлбөртэй

Порпорционал хэмжээнүүд.

Хэрвээ x ба y хувьсагчид шууд порпорционал бол тэдгээрийн хоорондын функционал хамаарал нь

y=kx

томьёогоор илэрхийлэгдэнэ. Энд k - тогтмол хэмжээ. / порпорционалын коэффициент / Шууд порпорционал хамаарлын график нь координатын эхийг дайрсан , X тэнхлэгтэй тангенс нь k тай тэнцүү өнцөг үүсгэсэн шулуун байна. / Зур. 8 / Иймээс порпорционалын коэффициентыг бас өнцгийн коэффициент гэж нэрлэдэг. / Зур. 8 / д k=1/3, k=1, k=-3 гурван графикийг үзүүлсэн байна.

  Нээгдсэн тоо: 7416 Төлбөртэй

Илтгэгч тэгшитгэл элсэлтийн ерөнхий шалгалтын материалд багтах нь бараг л гарцаагүй. Иймд төгсөгчид энэ төрлийн тэгшитгэлүүдийг бодох аргуудыг эзэмшсэн байх шаардлагатай. Тогтмол суурьтай зэргийн илтгэгчээр хувьсагч буюу үл мэдэгдэгч агуулагдсан тэгшитгэлийг илтгэгч тэгшитгэл гэдэг. Илтгэгч тэгшитгэлийг бодохдоо сурагчид ихэвчлэн дараах хүндрэлүүдтэй тулгардаг.

  • Илтгэгч тэгшитгэл, тэнцэтгэл биш, тэдгээрийн системийг бодох аргачлалыг нарийн сайн мэдэхгүй
  • Зэргийн чанар, илэрхийлэл хувиргах техникийг сайн эзэмшээгүйн улмаас илтгэгч тэгшитгэл, тэнцэтгэл бишд анхдагч тэгшитгэл болон тэнцэтгэл биштэй эн чацуу биш хувиргалтыг хийх
  • Шинэ хувьсагч /орлуулга/ оруулан бодолтыг хийсний дараа буцаан орлуулга хийхээ мартах

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 200

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 282

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 240

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 345

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 388

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 405

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 470

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 530

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 564

 
Энэ долоо хоногт

Кубын ирмэг a. Дээд талын төвийг суурийн оройтой холбоход үүсэх пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 1494

 

A=(-2; 3; 5), B=(4; -1; 7) векторууд өгөгджээ. 3A-2B векторын координатуудын нийлбэрийг ол.

Нээгдсэн тоо : 1075

 

Утасны лавлах номыг дэлгэн 7 цифрээс бүрдсэн дугаарыг санамсаргүйгээр байдлаар сонгоход дугаарын сүүлийн дөрвөн цифрүүд ижил байх хувилбарын тоог ол.

Нээгдсэн тоо : 305