Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2113 Төлбөртэй

Өмнөх хичээлүүдээр бид ерөнхий үржигдхүүнийг хаалтнаас гаргах, бүлэглэх гэсэн хоёр аргыг сурсан. Энэ удаа үржүүлэхийн хураангуй томьёог ашиглах хүчирхэг аргатай танилцах болно. Үүнийг сурагч бүр мэднэ. Томьёонуудыг ч сайн мэднэ гэж бодож байна. Тэгвэл энэ тухай ярих хэрэг байгаа юм уу гэсэн асуулт гарч болох юм. Томьёонуудыг математикт маш өргөнөөр ашигладаг. Тэдгээрийг үржүүлэх, бутархайг эмхэтгэх, тэгшитгэл бодох, интеграл тооцох гээд хэрэглэхгүй газаргүй. Иймээс эдгээр томьёонууд хаанаас гарч ирсэн, юунд хэрэгтэй, хэрхэн тогтоох, яаж хэрэглэх гээд шуудхан хэлэхэд авч үзэх зүйлүүд байна аа. Сурагчид томьёог сайн цээжилсэн мөртлөө бодлого дээр очоод бараг мэдэггүй хүн шиг болдог. Өөрөөр хэлбэл ашиглах тал дээр ноотой.

  Нээгдсэн тоо: 746 Бүртгүүлэх

Адитгал гэдэг бол тэнцүүгийн тэмдгийн хоёр тал адил буюу тэнцүү идэрхийллээр илэрхийлэгдэх тэнцэл. Адитгалууд үсгэн ба тоон гэж хуваагдана.

Адитгал илэрхийлэл

Алгебрийн хоёр илэрхийлэл үсгүүдийн дурын тоон утганд ижил тоон хэмжээстэй байвал тэдгээрийг адитгал буюу тэнцүү гэж нэрлэдэг.

Жишээ нь x(5 + x) ба 5x + x2 илэрхийллүүд адитгал илэрхийллүүд юм. Учир нь илэрхийллүүд x -ийн дурын утганд бие биетэйгээ тэнцүү утгыг өгнө. Иймээс эдгээрийг адитгал буюу адил тэнцүү гэж нэрлэж болно.
Үүнээс гадна өөр хоорондоо тэнцүү тоон илэрхийллүүдийг адитгал гэж нэрлэж болно.
Жишээ нь 20 - 8 ба 10 + 2 илэрхийллүүдийг адитгал гэж болно.

  Нээгдсэн тоо: 8174 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

  Нээгдсэн тоо: 332 Төлбөртэй

Олон нэмэгдхүүнтэй нийлбэрт тэгш буюу бүхэл нийлбэр өгөх гишүүд олдохгүй бол Нэмэгдхүүнүүдийг бүлэглэх хичээлээр үзсэн аргачлалыг ашиглахад асуудал үүсэх магадлал бий. Ийм үед нийлбэр дэх бүрдүүлэгчдийг тэгшитгэх аргыг ашиглах боломжтой.

Энэ арга нийлбэрт оролцож буй аль нэг бүрдүүлэгч дээр тодорхой тооны нэгжийг нэмээд өөр бүрдүүлэгчээс тийм тооны нэгжийг хасахад нийлбэр өөрчлөгдөхгүй гэсэн дүрэм дээр суурилана. Үүнийг л нэмэх үйлдэл дэх тэгшитгэл гэж нэрлээд байгаа юм.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 191

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 271

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 232

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 339

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 373

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 393

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 460

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 512

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 550

 
Энэ долоо хоногт

функцийн тодорхойлогдох мужийг ол.

Нээгдсэн тоо : 966

 

g(x)=2x-3x2 нь f(x)=x2-x3 -ийн уламжлал бол -ийг ол.

Нээгдсэн тоо : 486

 

хязгаарыг ол.

Нээгдсэн тоо : 232