Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2722 Төлбөртэй

Тогтмол ба хувьсагч

Математикт тогтмол ба хувьсах утгагууд гэж байдаг. Хувьсах утга нь бодлогын нөхцлөөс хамаарч өөрчлөгдөж байдаг бол тогтмол утга нь өөрчлөгддөггүй. Нэг ижил утга нь нэг бодлогод тогтмол, өөр бодлогод хувьсах байж болдог.
Жишээлбэл : Дэлхийн нэг өргөрөгт чөлөөт уналтын хурдатгал нь тогтмол байдаг боловч өргөрөгөөс хамаарч өөрчлөгдөж байдаг. Өөрөөр хэлбэл хувьсдаг утга юм.
Хувьсагчдыг голдуу латин цагаан толгойн сүүлчийн x, y, z, … харин тогтмол утгуудыг эхний  a, b, c, … үсгүүдээр тэмдэглэдэг.

  Нээгдсэн тоо: 3651 Нийтийн

Илэрхийллийг үржигдхүүнд задлах 4 дэх аргад квадрат гурван гишүүнтийг задлах ордог тухай бид Бодлого бодож сурах нь I хичээлд дурдсан байгаа. Бид үржүүлэхийн хураангуй томьёог ашиглан үржигдхүүнд задлах хичээлийн эцэст x2-6x+8 илэрхийллийг бүлэглэх аргыг ашиглан үржигдхүүнд задалсан. Ийм төрлийн илэрхийллийг хэрхэн үржигдхүүнд задлах талаар энэ хичээлээр авч үзэх болно.

  Нээгдсэн тоо: 4295 Төлбөртэй

Геометрийн хичээл математикаас илүү  хүнд гэж хүмүүс ярьдаг. Геометрт илүү олон тодорхойлолт, ойлголт, теоремууд орж ирдэгээс үүдэн ингэж үздэг байж болох талтай. Эдгээр нэмэлтүүдийг сайн ойлгоогүй бол геометрийн бодлогыг бодох ямарч боломжгүй. Иймээс Хавтгайн геометр хичээлийн багцыг үзэхийг хичээнгүйлэн зөвлөе.

Энэ хичээлд олон өнцөгтүүдийн тухай авч үзье. Огтлолцолгүй битүү тахир шугамаар хязгаарлагдсан геометрийн дүрсийг олон өнцөгт гэнэ.

  Нээгдсэн тоо: 3380 Төлбөртэй

1. Дээд эрэмбийн зарим тэгшитгэлийг квадрат тэгшитгэлийг ашиглан бодож болно. Тэгшитгэлийн зүүн талыг хоёроос ихгүй зэрэгтэй үржигдхүүнээр задлана. Тэгээд үржигдхүүн болгоныг тэгтэй тэнцүүлж квадрат эсвэл шугаман тэгшитгэлийг бодсноор анхдагч тэгшитгэлийн бүх шийдийг олно.

Жишээ
тэгшитгэлийг бод.

Бодолт
Тэгшитгэлийн зүүн талыг үржвэрт задалбал.
болно. Эндээс x2=0 тэгшитгэлийн шийд нь x1=x2=0 гэж гарна.
Одоо тэгшитгэлийг бодвол x3=1, x4=-3 гэж гарна
Тэгэхлээр анхны тэгшитгэл нь x1=0, x2=0, x3=1, x4=-3 гэсэн 4 шийдтэй болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 179

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 257

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 222

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 329

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 360

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 375

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 447

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 472

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 532

 
Энэ долоо хоногт

тэгшитгэлийг бод

Нээгдсэн тоо : 1510

 

4 хүнийг нэг эгнээнд хичнээн янзаар жагсах боломжтой вэ?

Нээгдсэн тоо : 1466

 

тэгшитгэлийн хамгийн бага эерэг шийдийг ол.

Нээгдсэн тоо : 582