Шүргэгчийн тэгшитгэл

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Уламжлалын геометр утгаар x0 цэг дээрх функцийн уламжлалын утга нь энэхүү налуун коэффициенттой тэнцүү байдгийг бид мэднэ.

Дээрх тодорхойлолтыг томьёогоор илэрхийлбэл . Функцийн графикт шүргэгчийн тэгшитгэлийг гаргахын тулд шүргэгч дээр (x,y) координат бүхий дурын цэгийг авъя.

ABC гурвалжинг авч үзвэл тангенсын тодорхойлолтын дагуу гэдэг нь харагдана. Эндээс гарна. Сүүлийн [1] тэгшитгэл бол y=f(x) функцийн графикийн x0 цэгт татсан шүргэгч шулууны тэгшитгэл юм. Тэгшитгэлийн гаргалтыг сайн үзээд [1] томьёог тогтоон аваарай. Томьёоны гаргалгаа их энгийн тул тайлбарлаад байх зүйлгүүй гэж бодож байна. Зөвхөн зургаа л сайн ойлговол бүх зүйл ойлгомжтой. Гаргалгааг үзүүлж байгаа нь математикийн томьёонууд хаа нэгэн газраас зүгээр гараад ирдэггүй бүгд зүй тогтолтой байдгийг харуулах гэсэн юм.
Тэгэхлээр шүргэгч шулууны тэгшитгэлийг бичихийн тулд бидэнд функцийн тэгшитгэл, шүргэгч дайран гарах цэгийг мэдэж байхад л хангалттай. Харин x0 цэг дээрх функцийн утга болон уламжлалын утгыг бид тооцон гаргаж чадна.  
Шүргэгчийн тэгшитгэлийг олох бодлогууд үндсэндээ 3 төрөлд хуваагдана.

1. Шүргэлтийн цэг x0 өгөгдсөн.

Бодлого 13.026
функцийн графикийн x=1 цэгт татсан шүргэгчийн тэгшитгэлийг бич.
Бодолт

Бодлого 13.027
функцийн графикт OX тэнхлэгтэй паралел шүргэгчдийн шүргэлтийн цэгүүдийн абсциссыг ол.
Бодолт

2. Шүргэгчийн налуун коэффициент өгөгдсөн. Өөрөөр хэлбэл x0 цэг дээрх функцийн уламжлалын утга өгөгдсөн.

Бодлого 13.028
y=-x+3 шулуунтай паралел функцийн графикт шүргэх шулууны тэгшитгэлийг бич.
Бодолт

3. Шүргэлтийн цэг биш боловч шүргэгч дайран өнгөрөх цэгийн координат өгөгдсөн.

Бодлого 13.029
A(3,1) цэгийг дайрах функцийн графикийн шүргэгчийн тэгшитгэлийг ол.
Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1110 Төлбөртэй

ЕБС -д матриц, хуурмаг тоо, вектор гэх зэрэг хэдэн сэдвийг өнгөцхөн үздэгээс болоод сурагчид ийм төрлийн бодлогуудыг бодохдоо тааруухан байдаг. Ямарч бодлогыг шийдэхэд онолын мэдлэг заавал хэрэгтэй. Өөрөөр хэлбэл бодлогын шийдийг гаргаж буй томьёо, теорем, аргачлалын учрыг ойлгоогүй эсхүл дутуу ойлголтоос л алдаа гаргадаг. Хичээлээр матрицийг үйлдлүүдийн талаар үзье.
2019 оны математикийн элсэлтийн шалгалтын материалд матрицийн үйлдлийн бодлогууд нилээд хэд орж ирсэн байсан.

  Нээгдсэн тоо: 5542 Нийтийн

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

  Нээгдсэн тоо: 3061 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

  Нээгдсэн тоо: 358 Төлбөртэй

Олон нэмэгдхүүнтэй нийлбэрт тэгш буюу бүхэл нийлбэр өгөх гишүүд олдохгүй бол Нэмэгдхүүнүүдийг бүлэглэх хичээлээр үзсэн аргачлалыг ашиглахад асуудал үүсэх магадлал бий. Ийм үед нийлбэр дэх бүрдүүлэгчдийг тэгшитгэх аргыг ашиглах боломжтой.

Энэ арга нийлбэрт оролцож буй аль нэг бүрдүүлэгч дээр тодорхой тооны нэгжийг нэмээд өөр бүрдүүлэгчээс тийм тооны нэгжийг хасахад нийлбэр өөрчлөгдөхгүй гэсэн дүрэм дээр суурилана. Үүнийг л нэмэх үйлдэл дэх тэгшитгэл гэж нэрлээд байгаа юм.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 244

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 333

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 297

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 395

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 438

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 466

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 543

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 621

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 652

 
Энэ долоо хоногт

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1094

 

илэрхийллийн x=3 утгыг ол.

Нээгдсэн тоо : 507

 

16 см суурьтай, 10 см хажуу талтай адил хажуут гурвалжин өгөгджээ. Гурвалжинд багтсан болон гурвалжинг багтаасан тойргуудын радиус болон тойргуудын төв хоорондын зайны нийлбэрийг ол.

Нээгдсэн тоо : 416