Комбинаторикийн томьёог ойлгох

Комбинаторикийн бодлогыг бодож сурах хэрэгтэй. Учир нь элсэлтийн ерөнхий шалгалтанд энэ сэдвийн бодлого орж ирэх нь гарцаагүй. Сэдэв өөрөө магадлалын онолын эхлэл болдог тул цаашдаа их дээд сургуульд үзэх хичээлүүдийн суурь тул сайн ойлгосон байх нь чухал. Эхний шатанд сэлгэмэл, гүйлгэмэл, хэсэглэлийн үндсэн томьёонуудын учрыг сайтар ойлгон тэдгээрийг бодлого бодоход хэрхэн яаж хэрэглэхийг сурсан байх шаардлагатай.

n төрлийн обьект байлаа гэж үзье. Зургийг хар. Энд обьектудыг төлөөлүүлэн ердөө 3 төрлийн дүрсээр жишээ авъя. Эдгээр дүрсүүд дээр сэлгэмэл, гүйлгэмэл, хэсэглэл гэсэн ухагдхууныг авч үзнэ. Нийт обьектын тоо энд нэг их чухал биш гол утга учир ялгааг ойлгох нь чухал. Ухагдхууны ялгааг сайн ойлгоогүйгээс болоод ихэнх сурагчид ийм төрлийн бодлогыг бодохдоо хүндрэлтэй тулдаг.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5635 Нийтийн

Тооны стандарт хэлбэр гэдэг нь түүний үржвэр хэлбэрийн бичилт юм.
Жишээ нь x·10n энд 1 ≤ x < 10, n - бүхэл тоо.

10 -ын бүхэл зэргүүдээр маш том болон жижиг тоонуудыг тооны стандарт хэлбэрээр бичиж болдог. Өөрөөр хэлбэл тоог илэрхийлэх урт бичлэгийг богино болгох боломж гэсэн үг.

  Нээгдсэн тоо: 7009 Нийтийн

Дөрвөн өнцөгт гэдэг нь дөрвөн өнцөг, дөрвөн талтай гүдгэр олон өнцөгт. Дөрвөн өнцөгтийг дөрвөн цуваанаас бүрдсэн битүү тахир шугамаар үүсэх хавтгайн тахир шугам доторх хэсэг бүрдүүлдэг.

  Нээгдсэн тоо: 28786 Нийтийн

Хаалттай тахир шугаман дүрсүүд периметр, талбайтай байдаг. Гурвалжин ч хаалттай тахир шугамаар үүсдэг дүрс тул хичээлээр гурвалжны периметр, талбайн талаар авч үзье.

Жич: Геометрийн бодлогод периметр, талбайг ол гэсэн нөхцөл байхаас тухайн ухагдхуун гэж юу болох хэрхэн тооцохыг та өөрөө мэдэж байхыг шаардана. Ухагдхууныг мэдэхгүй, яаж тооцохыг мэдэхгүй бол бодлогыг бодохгүй л гэсэн үг.

  Нээгдсэн тоо: 322 Бүртгүүлэх

Үржвэр дэх үржигдэгч болон үржигчийн өөрчлөлт үржвэрт хэрхэн нөлөөлөхийг авч үзье.

Үржигдхүүнийг ихэсгэх

Үржигдэгч болон үржигчийн аль нэгийг хэд дахин өсгөвөл үржвэр төчнөөн дахин өснө.

Үржвэрийг

a · b = c

тэнцэл хэлбэрээр илэрхийлбэл дээрх шинжийг

(a · m) · b = c · m эсхүл a · (b · m) = c · m

гэж тодорхойлж болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 249

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 336

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 299

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 400

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 446

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 471

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 554

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 626

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 662

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1407

 

тэгшитгэл бод.

Нээгдсэн тоо : 1014

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1059