Комбинаторикийн томьёог ойлгох

Комбинаторикийн бодлогыг бодож сурах хэрэгтэй. Учир нь элсэлтийн ерөнхий шалгалтанд энэ сэдвийн бодлого орж ирэх нь гарцаагүй. Сэдэв өөрөө магадлалын онолын эхлэл болдог тул цаашдаа их дээд сургуульд үзэх хичээлүүдийн суурь тул сайн ойлгосон байх нь чухал. Эхний шатанд сэлгэмэл, гүйлгэмэл, хэсэглэлийн үндсэн томьёонуудын учрыг сайтар ойлгон тэдгээрийг бодлого бодоход хэрхэн яаж хэрэглэхийг сурсан байх шаардлагатай.

n төрлийн обьект байлаа гэж үзье. Зургийг хар. Энд обьектудыг төлөөлүүлэн ердөө 3 төрлийн дүрсээр жишээ авъя. Эдгээр дүрсүүд дээр сэлгэмэл, гүйлгэмэл, хэсэглэл гэсэн ухагдхууныг авч үзнэ. Нийт обьектын тоо энд нэг их чухал биш гол утга учир ялгааг ойлгох нь чухал. Ухагдхууны ялгааг сайн ойлгоогүйгээс болоод ихэнх сурагчид ийм төрлийн бодлогыг бодохдоо хүндрэлтэй тулдаг.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2429 Төлбөртэй

Тэнцэл бишийн баталгаа

Тэнцэл бишийг батлах хэд хэдэн арга байдаг. Эдгээрийг   / энд a эерэг тоо / жишээн дээр авч үзье.
1. Мэдэгдэж буй эсвэл өмнө нь батлагдсан тэнцэл бишийг ашиглах.

( a−1 )2 ≥0 гэдэг нь ойлгомжтой. a>0 учраас байна. Хаалтыг задалбал болох бөгөөд эндээс гарна.

2. Тэнцэл бишийн хэсгүүдийн ялгаварын тэмдгийг ашиглах.

Тэнцэл бишийн зүүн баруун талын хэсгийн ялгаварыг авч үзье.
Эндээс a=1 үед л тэнцэл гарах нь харагдаж байна.

3. Эсрэгээс нь батлах.

гэж үзье. Тэнцэл бишийн хоёр талыг a гаар үржүүлбэл a2 +1<2a буюу a2 +1−2a<0 өөрөөр (a−1)2 <0 болно. Энэ нь буруу тэнцэл биш тэгэхээр эсрэг тохиолдол нь үнэн болно.

  Нээгдсэн тоо: 2495 Төлбөртэй

Математикийн элсэлтийн шалгалтанд геометрийн байгуулалт хийх бодлого заавал орж ирдэг. Бодлогууд ихэнхдээ нөхөх хэсэгт ордог бөгөөд зургийг хир зөв гаргаснаас амжилт ихээхэн шалгаалах болно. Нөхөх хэсгийн бодлогын оноо өндөр байдаг. Геомтрийн байгуулалт дээр сурагчид ерөнхий дүрсээ зөв зурсан хэдий ч цаашхи байгуулалт ялангуяа огтлолыг хийхдээ ихээхэн хүндрэлтэй тулдаг. Иймд энэ хичээлээр байгуулалт хийхэд төвөгтэйд орох пирамидын огтлолыг хэрхэн байгуулахыг авч үзэх болно. Сайн зөв зурсан зургаас бодлогын хариуг хэмжээд олчих боломжтой шүү.
Пирамидын огтлолыг байгуулах аргын тодорхой жишээн дээр авч үзцгээе. Пирамидад паралель хавтгайнууд байдаггүй болохоор хавтгайн ирмэгтэй зүсэгч хавтгай огтлолцох шугамыг байгуулахдаа энэхүү ирмэг орших хавтгай дээрх хоёр цэгийг дайрсан шулууныг татах аргыг голдуу хэрэглэдэг.

  Нээгдсэн тоо: 3416 Төлбөртэй

Өнцөг

Огтлолцсон хоёр шулууны хоорондох өнцгийг хавтгайн геометрийн адилаар хэмжинэ. Учир нь эдгээр шулууныг дайруулан хавтгай татаж болдог. Паралел хоёр шулууны хоорондын өнцөг нь 0 эсвэл . Зөрсөн AB ба CD /Зур. 70/ хоёр шулууны хоорондын өнцгийг дараах байдлаар тодорхойлно.
Дурын O цэгийг дайруулаад OM || AB ба ON || CD байх OM, ON цацрагийг татна. Тэгвэл AB ба CD гийн хоорондох өнцөг нь NOM тэй тэнцүү гэж үзнэ. Өөр хэлбэл AB ба CD шулууныг өөртөө нь паралел байдлаар огтлолцох хүртэл нь шилжүүлнэ гэсэн үг. Тухайлбал O цэгийг AB ба CD шулуунуудын аль нэг дээр авч болно. Энэ тохиолдолд O цэг нь хөдөлгөөнгүй байна.

  Нээгдсэн тоо: 3556 Бүртгүүлэх

Уламжлалыг тооцох үйлдлийг дифференциалчлах гэдгийг Уламжлалыг тооцох хичээлд дурдсан. Бид хичээлээр уламжлалын үндсэн жагсаалтын томьёонуудыг уламжлалын тодорхойлолтыг ашиглан хэрхэн гаргаж байгаа талаар үзсэн. Уламжлалын үндсэн жагсаалтын томьёонуудаа цээжилсэн бол одоо функцын уламжлалыг олж сурцгаая. Уламжлалыг тооцох хичээлээс үндсэн жагсаалт болон уламжлал тооцох дүрмийг ашиглан бусад функцийн уламжлалыг олдог тухай та мэдсэн байгаа.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 8

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 18

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 16

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 38

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 657

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693