Комбинаторикийн томьёог ойлгох

Комбинаторикийн бодлогыг бодож сурах хэрэгтэй. Учир нь элсэлтийн ерөнхий шалгалтанд энэ сэдвийн бодлого орж ирэх нь гарцаагүй. Сэдэв өөрөө магадлалын онолын эхлэл болдог тул цаашдаа их дээд сургуульд үзэх хичээлүүдийн суурь тул сайн ойлгосон байх нь чухал. Эхний шатанд сэлгэмэл, гүйлгэмэл, хэсэглэлийн үндсэн томьёонуудын учрыг сайтар ойлгон тэдгээрийг бодлого бодоход хэрхэн яаж хэрэглэхийг сурсан байх шаардлагатай.

n төрлийн обьект байлаа гэж үзье. Зургийг хар. Энд обьектудыг төлөөлүүлэн ердөө 3 төрлийн дүрсээр жишээ авъя. Эдгээр дүрсүүд дээр сэлгэмэл, гүйлгэмэл, хэсэглэл гэсэн ухагдхууныг авч үзнэ. Нийт обьектын тоо энд нэг их чухал биш гол утга учир ялгааг ойлгох нь чухал. Ухагдхууны ялгааг сайн ойлгоогүйгээс болоод ихэнх сурагчид ийм төрлийн бодлогыг бодохдоо хүндрэлтэй тулдаг.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 996 Нийтийн

Сурагчид арифметик үйлдэлд суралцаж байхдаа үйлдлийн бүрдүүлэгчдийн нэрийг сайн тогтоолгүй өнгөрөх гээд байдаг. Энэ нь алсдаа дунд болоод ахлах ангийн шалгалт, шүүлэгт ирж буй бодлогын нөхцлийг ойлгоход тодорхой хүндрэлийг үүсгэдэг. Жишээ нь бодлогын нөхцөлд нэмэгдхүүн, хасагч, ялгавар, нийлбэр гэх мэтээр оноосон нэрийг ашигласан байхдаг. Хэрвээ эдгээр нэрүүд юуг хэлж байгааг мэдэхгүй бол нөхцлийг ойлгоход хэцүү. Энэ мэт хайнга хандлагаас болоод сурагчид математикийн хичээлд дургүй болох хандлагатай болж ирдэгийг сануулъя.    

  Нээгдсэн тоо: 8378 Төлбөртэй

Сэлгэмэл

гэсэн n ширхэг ялгаатай элементийг авъя. Зөвхөн байрыг нь солих замаар бүх боломжит хувилбарыг гаргая. Ингэхдээ хувилбар болгонд n ширхэг элемент байна. Ийм байдлаар гаргаж авсан хувилбар бүрийг сэлгэмэл гэнэ. n элементээс гаргах сэлгэмэлийн нийт тоог Pn гэж тэмдэглэнэ. Энэ тоо нь 1 ээс n хүртэлх бүх тоонуудын үржвэртэй тэнцүү байдаг.

1·2·3·…·( n−1 )·n үржвэрийг хураангуй байдлаар n! гэж тэмдэглэдэг бөгөөд факториал гэж нэрлэдэг. 0!=1 байдаг.

Жишээ:
a, b, c гэсэн 3 элементээс гарах сэлгэмэлийн тоог ол.

Бодолт:
Сэлгэмэлийн тоог олох томьёогоор болно. Үнэхээр дээрх 3 элементээс abc, acb, bac, bca, cab, cba гэсэн 6 сэлгэмэл гаргаж болно.

  Нээгдсэн тоо: 469 Төлбөртэй

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Гурвалжны оройг эсрэг орших талын дундажтай холбосон хэрчмийг медиан гэнэ.

median_01_01

Дээрх зураг дээр BD хэрчим бол ABC гурвалжны B оройгоос буулгасан медиан юм. Гурвалжин бүр гурван оройтой учраас бүх гурвалжин гурван медиантай байна.

  Нээгдсэн тоо: 6073 Бүртгүүлэх

үед a цэгийн орчимд дифференциалчлагддаг f(x), g(x) функцуудын хувьд
эсвэл, эсвэл хязгаар байна.
нөхцлүүд биелж байвал байна.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 247

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 334

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 298

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 395

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 439

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 467

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 548

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 622

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 656

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1403

 

тэгшитгэл бод.

Нээгдсэн тоо : 1010

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1054