Комбинаторикийн томьёог ойлгох

Комбинаторикийн бодлогыг бодож сурах хэрэгтэй. Учир нь элсэлтийн ерөнхий шалгалтанд энэ сэдвийн бодлого орж ирэх нь гарцаагүй. Сэдэв өөрөө магадлалын онолын эхлэл болдог тул цаашдаа их дээд сургуульд үзэх хичээлүүдийн суурь тул сайн ойлгосон байх нь чухал. Эхний шатанд сэлгэмэл, гүйлгэмэл, хэсэглэлийн үндсэн томьёонуудын учрыг сайтар ойлгон тэдгээрийг бодлого бодоход хэрхэн яаж хэрэглэхийг сурсан байх шаардлагатай.

n төрлийн обьект байлаа гэж үзье. Зургийг хар. Энд обьектудыг төлөөлүүлэн ердөө 3 төрлийн дүрсээр жишээ авъя. Эдгээр дүрсүүд дээр сэлгэмэл, гүйлгэмэл, хэсэглэл гэсэн ухагдхууныг авч үзнэ. Нийт обьектын тоо энд нэг их чухал биш гол утга учир ялгааг ойлгох нь чухал. Ухагдхууны ялгааг сайн ойлгоогүйгээс болоод ихэнх сурагчид ийм төрлийн бодлогыг бодохдоо хүндрэлтэй тулдаг.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3075 Төлбөртэй

Тригнометрт дурын өнцгийн / хурц, мохоо, эерэг, сөрөг / хувьд үнэн байх дүрмийг гаргахын тулд нэгж тойрогийг байгуулах хэрэгтэй. Өөрөөр хэлбэл радиус нь 1 тэнцүү тойрог. / Зур. 3 /

  Нээгдсэн тоо: 2248 Бүртгүүлэх

Кубыг хавтгайгаар зүсэлт хийх нь пирамидын зүсэлтийг бодвол арай энгийн. Өгөгдсөн цэгүүдийн хоёр нь нэг хавтгайд байрлаж байвал тэдгээрийг дайруулан шулуун татаж зүсэгч хавтгайн мөрийг гаргаж болно. Кубын зүсэлтийг байгуулахад зүсэгч хавтгайн мөрийг байгуулах бас нэг боломж байдаг. Паралел хоёр хавтгайг гуравдахь хавтгай паралел шугамуудаар огтолж байгаа тул аль нэгэн талстад зүсэлтийн шугамыг байгуулсан бол нөгөө хавтгайд зүсэлт дайран өнгөрөх цэг олдох бөгөөд бид энэхүү цэгийг дайруулан байгуулсан шулуунтай паралел шулууныг татаж болно. Кубыг хавтгайгаар зүссэн байгуулалтыг хэрхэн үүсгэхийг тодорхой жишээнүүдээр авч үзье.

  Нээгдсэн тоо: 2810 Төлбөртэй

Олон төрлийн бодлого, хувиргалт хийхэд тригнометрийн өнцөг хаана аль үед байрлаж байгаагаас хамааран тэдгээрийн тэмдгийг тооцох хэрэгтэй болдог. Иймээс тригнометрийн функцуудын тэмдгийг мэддэг байх нь туйлын чухал. Гэхдээ эдгээрийг цээжилнэ гэвэл хүнд бөгөөд алдаа гаргах өндөр магадлалтай тул тэмдгийн учрыг ойлгох хэрэгтэй. Энэ нь илүү амар болоод найдвартайн дээр тригнометрийг ойлгох үндсэн нөхцлүүдийн нэг мөн.

  Нээгдсэн тоо: 289 Бүртгүүлэх

Хасах үйлдэлд нэмэх үйлдлийнх шиг байр солих, бүлэглэх гэх мэт дүрмүүд байдаггүй тул үйлдлийг цээжээр хийхэд сурагчдад эхний үедээ хүндхэн байж болох талтай. Хасах үйлдэл бүрд баганаар хасах аргыг ашиглаж болох ч цаас, харандаа, үзэг гээд зүйлүүд хэрэгтэй болно. Иймээс цөөн оронтой тоонуудын хасах үйлдлийг цээжээр хийхэд ашигладаг аргачлалуудын талаар авч үзье.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 256

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 340

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 308

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 405

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 451

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 479

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 562

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 638

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 674

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1416

 

тэгшитгэл бод.

Нээгдсэн тоо : 1021

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1067