Дугуй

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

Дугуй гэдэг нь тойргоор хязгаарлагдсан хавтгайн хэсэг юм.

Дугуйг хязгаарлаж байгаа тойргийн төв дугуйн төв харин дугуйн төвөөс тойргийн дурын цэг хүртлэх зайг дугуйн радиус гэж нэрлэдэг. Иймээс зурагт үзүүлсэн дугуйн төв O харин OA бол түүний радиус. Эндээс ойлголтын зөрүү үүсдэг. Тойрог хичээлд дээрх зурагт үзүүлсэн дугуйг хязгаарлаж байгаа хөх битүү шугамыг л тойрог гэж тодорхойлсон байгаа. Харин энэ битүү шугамаар хязгаарлагдаж буй хавтгайн цэнхэр хэсгийг дугуй гээд байгаа хэрэг. Тойрог, дугуй хоёрт төв, радиусууд ижилхэн боловч тооцоологдох шинжүүд нь өөр.

Дугуйн талбай, тойргийн урт.

Дугуй хавтгайн хэсэг учраас түүнд талбай гэсэн ойлголт бий. Дугуйн талбай π тоог дугуйн радиусийн квадратаар үржүүлсэнтэй тэнцүү. Дугуйн диаметр түүний радиусийг хоёроор үржүүлсэнтэй тэнцүү тул радис /r/ диаметр /D/ -г хоёрт хуваасантай тэнцүү. Эндээс дугуйн талбайг диаметрээр олох томьёо
гэж гарна.
Тойрог шугамаар тодорхойлогддог учраас түүнд талбай гэж байдаггүй харин урт гэсэн ойлголт бий. Тойргийн урт π тоо тойргийн радиусийн үржвэрийг хоёроор үржүүлсэн тэнцдэг.

Санамж: Хавтгайн геометрийг үзэж эхлэж байгаа сурагчид тойрог, дугуйн ялгааг ойлгоогүйгээс эдгээр ойлголтыг холин бодлогын нөхцлийг буруу ойлгох тохиолдол ихээр гаргадаг.

Дугуйн сектор, Секторийн талбай.

Дугуйн хоёр радиусаар хязгаарлагдсан дугуйн хэсгийг сектор гэнэ.

Иймээс хоёр радиус дугуйг хоёр секторт хуваана. Зургийг хар. Дугуйн секторийн талбайг хэрхэн олохыг

дээрх зурагт үзүүлсэн сектороор авч үзье. Дугуйн төв O болон AO, OB радиусуудаар үүссэн сектор n0 градусийн хэмжээтэй AOB нумаар хязгаарлагдсан гэж үзье. Тэгвэл ерөнхий төгсгөлтэй хоёр нумын градусийн хэмжээсийн нийлбэр 360 гэдгийг Төв өнцөг, түүний шинжүүд хичээлээс мэдэх учраас O болон AO, OB радиусуудаар үүссэн секторийн талбай нь дугуйн талбайг 360 -д хуваагаад AOB нумын хэмжээс n -ээр үржүүлсэнтэй тэнцүү байна. Математик бичлэгээр байна. Секторийн талбайн илэрхийллийг гэж задлан бичиж болно. Энд нь секторийн нумын урт. Эндээс секторийн талбай буюу тухайн секторийн нумын уртыг дугуйн радиусийн хагасаар үржүүлсэнтэй тэнцүү гэж гарна.

Сегмент. Сегментийн талбай.   

Сегмент гэдэг нь нум болон түүнд тулсан хөвчөөр хязгаарлагдсан дугуйн хэсэг юм.

Иймээс дурын хөвч дугуйг хоёр сегментэд хуваана. Зургийг хар. Хөвч, нум ойлголтыг мартсан бол Тойрог хичээлийг үзээрэй.

Сегментийн талбай

Зурагт дугуйн сегментийг ногоон өнгөөр будсан. Энд AB хэрчим бол хөвч, A ба B цэгүүдийн хоорондох тойргийн хэсэг бол тойргийн нум, R - дугуйн радиус, α - секторийн өнцөг гэдгийг сануулъя.
Радиус болон градусаар өгөгдсөн төв өнцөгөөр буюу α - өнцөг градусаар өгөгдсөн үед
томьёогоор сегментийн талбайг олдог.
Санамж: Тооцоонд π -гийн утгыг ойролцоогоор 3,14 гэж тооцдог.

Радиус болон радианаар өгөдсөн секторийн өнцгөөр буюу буюу α - өнцөг радианаар өгөгдсөн үед томьёогоор сегментийн талбайг олдог.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 19755 Нийтийн

Бага тооноос их тоог хасахад сөрөг тоо гарна.

Жишээ. 10-15=-5

5 ын тооны өмнө байгаа «-» тэмдэг нь уг тоог сөрөг тоо болохыг илтгэнэ.
Бүхэл сөрөг тоон цуваа нь төгсгөлгүй.

-1, -2, -3, -4, -5, …

Бага бутархай тооноос их бутархай тоог хасахад сөрөг бутархай тоо гарна.

Жишээ



  Нээгдсэн тоо: 78 Нийтийн

Тэг тоонд нэгж байдаггүй тул түүнийг ямар нэгэн тоон дээр нэмэх эсхүл хасахад тухайн тоо өөрчлөгддөггүй.

arif03_02_01

  Нээгдсэн тоо: 25430 Нийтийн

Хаалттай тахир шугаман дүрсүүд периметр, талбайтай байдаг. Гурвалжин ч хаалттай тахир шугамаар үүсдэг дүрс тул хичээлээр гурвалжны периметр, талбайн талаар авч үзье.

Жич: Геометрийн бодлогод периметр, талбайг ол гэсэн нөхцөл байхаас тухайн ухагдхуун гэж юу болох хэрхэн тооцохыг та өөрөө мэдэж байхыг шаардана. Ухагдхууныг мэдэхгүй, яаж тооцохыг мэдэхгүй бол бодлогыг бодохгүй л гэсэн үг.

  Нээгдсэн тоо: 2242 Нийтийн

Нэг нь нөгөөгийнхөө бүх шугаман хэмжээсийг нэг ижил харьцаагаар исэхгэх юмуу багасгах замаар гаргасан хоёр биетийг төстэй биет гэнэ. Автомашин түүний модел хоёр нь төстэй биетүүд.

Биетийн төстэй байх шинжүүд:

  • Хоёр цилиндр эсвэл конусын сууриудын радиус нь өндөртэйгээ порпорционал байвал төстэй байна
  • Хоёр ба түүнээс дээш биетүүдийн хавтгай болон муруй гадаргуунуудын талбайнууд нь дурын харгалзах хэрчмийн квадратад порпорционал байвал тэдгээр нь төстэй байна.
  • Хоёр ба түүнээс дээш биетүүдийн эзэлхүүнүүд нь дурын харгалзах хэрчмийн кубэд порпорционал байвал тэдгээр нь төстэй байна.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 15

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 21

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549