Дугуй

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

Дугуй гэдэг нь тойргоор хязгаарлагдсан хавтгайн хэсэг юм.

Дугуйг хязгаарлаж байгаа тойргийн төв дугуйн төв харин дугуйн төвөөс тойргийн дурын цэг хүртлэх зайг дугуйн радиус гэж нэрлэдэг. Иймээс зурагт үзүүлсэн дугуйн төв O харин OA бол түүний радиус. Эндээс ойлголтын зөрүү үүсдэг. Тойрог хичээлд дээрх зурагт үзүүлсэн дугуйг хязгаарлаж байгаа хөх битүү шугамыг л тойрог гэж тодорхойлсон байгаа. Харин энэ битүү шугамаар хязгаарлагдаж буй хавтгайн цэнхэр хэсгийг дугуй гээд байгаа хэрэг. Тойрог, дугуй хоёрт төв, радиусууд ижилхэн боловч тооцоологдох шинжүүд нь өөр.

Дугуйн талбай, тойргийн урт.

Дугуй хавтгайн хэсэг учраас түүнд талбай гэсэн ойлголт бий. Дугуйн талбай π тоог дугуйн радиусийн квадратаар үржүүлсэнтэй тэнцүү. Дугуйн диаметр түүний радиусийг хоёроор үржүүлсэнтэй тэнцүү тул радис /r/ диаметр /D/ -г хоёрт хуваасантай тэнцүү. Эндээс дугуйн талбайг диаметрээр олох томьёо
гэж гарна.
Тойрог шугамаар тодорхойлогддог учраас түүнд талбай гэж байдаггүй харин урт гэсэн ойлголт бий. Тойргийн урт π тоо тойргийн радиусийн үржвэрийг хоёроор үржүүлсэн тэнцдэг.

Санамж: Хавтгайн геометрийг үзэж эхлэж байгаа сурагчид тойрог, дугуйн ялгааг ойлгоогүйгээс эдгээр ойлголтыг холин бодлогын нөхцлийг буруу ойлгох тохиолдол ихээр гаргадаг.

Дугуйн сектор, Секторийн талбай.

Дугуйн хоёр радиусаар хязгаарлагдсан дугуйн хэсгийг сектор гэнэ.

Иймээс хоёр радиус дугуйг хоёр секторт хуваана. Зургийг хар. Дугуйн секторийн талбайг хэрхэн олохыг

дээрх зурагт үзүүлсэн сектороор авч үзье. Дугуйн төв O болон AO, OB радиусуудаар үүссэн сектор n0 градусийн хэмжээтэй AOB нумаар хязгаарлагдсан гэж үзье. Тэгвэл ерөнхий төгсгөлтэй хоёр нумын градусийн хэмжээсийн нийлбэр 360 гэдгийг Төв өнцөг, түүний шинжүүд хичээлээс мэдэх учраас O болон AO, OB радиусуудаар үүссэн секторийн талбай нь дугуйн талбайг 360 -д хуваагаад AOB нумын хэмжээс n -ээр үржүүлсэнтэй тэнцүү байна. Математик бичлэгээр байна. Секторийн талбайн илэрхийллийг гэж задлан бичиж болно. Энд нь секторийн нумын урт. Эндээс секторийн талбай буюу тухайн секторийн нумын уртыг дугуйн радиусийн хагасаар үржүүлсэнтэй тэнцүү гэж гарна.

Сегмент. Сегментийн талбай.   

Сегмент гэдэг нь нум болон түүнд тулсан хөвчөөр хязгаарлагдсан дугуйн хэсэг юм.

Иймээс дурын хөвч дугуйг хоёр сегментэд хуваана. Зургийг хар. Хөвч, нум ойлголтыг мартсан бол Тойрог хичээлийг үзээрэй.

Сегментийн талбай

Зурагт дугуйн сегментийг ногоон өнгөөр будсан. Энд AB хэрчим бол хөвч, A ба B цэгүүдийн хоорондох тойргийн хэсэг бол тойргийн нум, R - дугуйн радиус, α - секторийн өнцөг гэдгийг сануулъя.
Радиус болон градусаар өгөгдсөн төв өнцөгөөр буюу α - өнцөг градусаар өгөгдсөн үед
томьёогоор сегментийн талбайг олдог.
Санамж: Тооцоонд π -гийн утгыг ойролцоогоор 3,14 гэж тооцдог.

Радиус болон радианаар өгөдсөн секторийн өнцгөөр буюу буюу α - өнцөг радианаар өгөгдсөн үед томьёогоор сегментийн талбайг олдог.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2176 Бүртгүүлэх

Кубыг хавтгайгаар зүсэлт хийх нь пирамидын зүсэлтийг бодвол арай энгийн. Өгөгдсөн цэгүүдийн хоёр нь нэг хавтгайд байрлаж байвал тэдгээрийг дайруулан шулуун татаж зүсэгч хавтгайн мөрийг гаргаж болно. Кубын зүсэлтийг байгуулахад зүсэгч хавтгайн мөрийг байгуулах бас нэг боломж байдаг. Паралел хоёр хавтгайг гуравдахь хавтгай паралел шугамуудаар огтолж байгаа тул аль нэгэн талстад зүсэлтийн шугамыг байгуулсан бол нөгөө хавтгайд зүсэлт дайран өнгөрөх цэг олдох бөгөөд бид энэхүү цэгийг дайруулан байгуулсан шулуунтай паралел шулууныг татаж болно. Кубыг хавтгайгаар зүссэн байгуулалтыг хэрхэн үүсгэхийг тодорхой жишээнүүдээр авч үзье.

  Нээгдсэн тоо: 8020 Бүртгүүлэх

x2=a гэсэн дутуу квадрат тэгшитгэлийг авч үзье. Энд a - тодорхой тоо. Энэ тэгшитгэлийн шийд нь

болно.

Энд гурван тохиолдол гарна.

1. Хэрвээ a=0 бол x=0
2. Хэрвээ a нь эерэг тоо бол тэгшитгэл эерэг, сөрөг хоёр шийдтэй.

Жишээ
тэгшитгэл нь 5, -5 гэсэн хоёр шийдтэй. Шийдийг дараах хэлбэрээр гэж бичдэг.

  Нээгдсэн тоо: 4203 Нийтийн

Шугам гэдэг нь бие биетэйгээ дараалан байрласан цэгүүдийн олонлогоор үүсэх геометрийн дүрс.
Ямар ч шугамыг тодорхой замаар шилжиж буй цэгийн хөдөлгөөний мөр гэж үзэж болно. Жишээ нь цаасан дээр харандаагаар дарвал түүний бал цаасан дээр цэг буюу мөрийг үүсгэнэ. Харандааг цааш цаасан дээгүүр хөдөлгөвөл хөдөлгөөний замаар бал бие биетэйгээ дараалан байрлах цэгүүдийн олонлогийг үүсгэснээр шугам зурагдана.
Геометрийн шугамд өргөн гэсэн ойлголт байдаггүй гэдгийг тогтоон аваарай.

  Нээгдсэн тоо: 914 Нийтийн

Ямарч натурал тоог ангилалын бүрдүүлэгчдийн нийлбэр хэлбэрээр илэрхийлж болно.
Үүнийг ойлгохын тулд 999 тоог аваад үзье. 999 тоо нь 9 зуут, 9 аравт, 9 нэгжээс бүрдэнэ.

Тэгвэл 999 = 9 зуут + 9 аравт + 9 нэгж = 900 + 90 + 9 гэсэн үг.

Дээрх бичлэгийн 900, 90, 9 бол оронгийн бүрдүүлэгчид.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 128

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 190

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 158

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 284

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 313

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 320

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 385

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 385

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 461

 
Энэ долоо хоногт

Нээгдсэн тоо : 746

 

Аяга, стакан, ваар, лаазанд сүү, ундаа, квас, ус байжээ. Аяганд ус, сүү байхгүй, ундаатай сав ваар болон квастай савны дунд, лаазанд ундаа, усны аль нь ч байхгүй, стакан лааз ба сүүтэй савтай зэрэгцэн байрласан бол ямар саванд ямар шингэнийг хийсэн бэ.

Жич: Маш сонирхолтой гоё бодлого. Оролдоод үзээрэй.

Нээгдсэн тоо : 1074

 

илэрхийллийн хялбарчил.

Нээгдсэн тоо : 325