Дугуй

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

Дугуй гэдэг нь тойргоор хязгаарлагдсан хавтгайн хэсэг юм.

Дугуйг хязгаарлаж байгаа тойргийн төв дугуйн төв харин дугуйн төвөөс тойргийн дурын цэг хүртлэх зайг дугуйн радиус гэж нэрлэдэг. Иймээс зурагт үзүүлсэн дугуйн төв O харин OA бол түүний радиус. Эндээс ойлголтын зөрүү үүсдэг. Тойрог хичээлд дээрх зурагт үзүүлсэн дугуйг хязгаарлаж байгаа хөх битүү шугамыг л тойрог гэж тодорхойлсон байгаа. Харин энэ битүү шугамаар хязгаарлагдаж буй хавтгайн цэнхэр хэсгийг дугуй гээд байгаа хэрэг. Тойрог, дугуй хоёрт төв, радиусууд ижилхэн боловч тооцоологдох шинжүүд нь өөр.

Дугуйн талбай, тойргийн урт.

Дугуй хавтгайн хэсэг учраас түүнд талбай гэсэн ойлголт бий. Дугуйн талбай π тоог дугуйн радиусийн квадратаар үржүүлсэнтэй тэнцүү. Дугуйн диаметр түүний радиусийг хоёроор үржүүлсэнтэй тэнцүү тул радис /r/ диаметр /D/ -г хоёрт хуваасантай тэнцүү. Эндээс дугуйн талбайг диаметрээр олох томьёо
гэж гарна.
Тойрог шугамаар тодорхойлогддог учраас түүнд талбай гэж байдаггүй харин урт гэсэн ойлголт бий. Тойргийн урт π тоо тойргийн радиусийн үржвэрийг хоёроор үржүүлсэн тэнцдэг.

Санамж: Хавтгайн геометрийг үзэж эхлэж байгаа сурагчид тойрог, дугуйн ялгааг ойлгоогүйгээс эдгээр ойлголтыг холин бодлогын нөхцлийг буруу ойлгох тохиолдол ихээр гаргадаг.

Дугуйн сектор, Секторийн талбай.

Дугуйн хоёр радиусаар хязгаарлагдсан дугуйн хэсгийг сектор гэнэ.

Иймээс хоёр радиус дугуйг хоёр секторт хуваана. Зургийг хар. Дугуйн секторийн талбайг хэрхэн олохыг

дээрх зурагт үзүүлсэн сектороор авч үзье. Дугуйн төв O болон AO, OB радиусуудаар үүссэн сектор n0 градусийн хэмжээтэй AOB нумаар хязгаарлагдсан гэж үзье. Тэгвэл ерөнхий төгсгөлтэй хоёр нумын градусийн хэмжээсийн нийлбэр 360 гэдгийг Төв өнцөг, түүний шинжүүд хичээлээс мэдэх учраас O болон AO, OB радиусуудаар үүссэн секторийн талбай нь дугуйн талбайг 360 -д хуваагаад AOB нумын хэмжээс n -ээр үржүүлсэнтэй тэнцүү байна. Математик бичлэгээр байна. Секторийн талбайн илэрхийллийг гэж задлан бичиж болно. Энд нь секторийн нумын урт. Эндээс секторийн талбай буюу тухайн секторийн нумын уртыг дугуйн радиусийн хагасаар үржүүлсэнтэй тэнцүү гэж гарна.

Сегмент. Сегментийн талбай.   

Сегмент гэдэг нь нум болон түүнд тулсан хөвчөөр хязгаарлагдсан дугуйн хэсэг юм.

Иймээс дурын хөвч дугуйг хоёр сегментэд хуваана. Зургийг хар. Хөвч, нум ойлголтыг мартсан бол Тойрог хичээлийг үзээрэй.

Сегментийн талбай

Зурагт дугуйн сегментийг ногоон өнгөөр будсан. Энд AB хэрчим бол хөвч, A ба B цэгүүдийн хоорондох тойргийн хэсэг бол тойргийн нум, R - дугуйн радиус, α - секторийн өнцөг гэдгийг сануулъя.
Радиус болон градусаар өгөгдсөн төв өнцөгөөр буюу α - өнцөг градусаар өгөгдсөн үед
томьёогоор сегментийн талбайг олдог.
Санамж: Тооцоонд π -гийн утгыг ойролцоогоор 3,14 гэж тооцдог.

Радиус болон радианаар өгөдсөн секторийн өнцгөөр буюу буюу α - өнцөг радианаар өгөгдсөн үед томьёогоор сегментийн талбайг олдог.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 12746 Нийтийн

Гурвалжны гайхамшигт цэгүүдээс сурагчдын хамгийн бага мэдээлэлтэй байдаг нь орто төв, орто гурвалжин байдаг. Гэтэл элсэлтийн шалгалт дээр ийм төрлийн бодлогууд ирэх тохиолдол байна. Иймээс энэ хичээлээр гурвалжны орто төв гэж юуг хэлэх түүнийг бодлогод хэрхэн ашиглахыг элсэлтийн ерөнхий шалгалтанд ирж байсан бодлогууд дээр тайлбарлах болно.

  Нээгдсэн тоо: 16533 Нийтийн

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

  Нээгдсэн тоо: 2819 Төлбөртэй

Тогтмол ба хувьсагч

Математикт тогтмол ба хувьсах утгагууд гэж байдаг. Хувьсах утга нь бодлогын нөхцлөөс хамаарч өөрчлөгдөж байдаг бол тогтмол утга нь өөрчлөгддөггүй. Нэг ижил утга нь нэг бодлогод тогтмол, өөр бодлогод хувьсах байж болдог.
Жишээлбэл : Дэлхийн нэг өргөрөгт чөлөөт уналтын хурдатгал нь тогтмол байдаг боловч өргөрөгөөс хамаарч өөрчлөгдөж байдаг. Өөрөөр хэлбэл хувьсдаг утга юм.
Хувьсагчдыг голдуу латин цагаан толгойн сүүлчийн x, y, z, … харин тогтмол утгуудыг эхний  a, b, c, … үсгүүдээр тэмдэглэдэг.

  Нээгдсэн тоо: 2332 Төлбөртэй

Алгебрын суурь ухагдхууны нэг бол илэрхийллийг хялбарчлах байдаг. Өмнөх хичээлээр рационал бутархай гэж юу болох тэдгээрийг хялбарчилахад үржүүлэхийн хураангуй томьёог хэрхэн ашиглахыг сайн ойлгоогүй бол Рационал бутархайтай ажиллаж сурах I хичээлийг үзэхийг зөвлөе. Бодлого бодох суурь аргачлал илэрхийллийн хялбарчлал дээр тогтдог. Үүнийг сайн эзэмшээгүй үед ямарч бодлого танд хүндрэл үүсгэх бүрэн боломжтой. Иймээс хичээлийг анхааралтай сайн судлан ойлгон авахыг хичээгээрэй.

Нэг үзээд ойлгохгүй бол дахиад үз. Хэн ч таныг олон удаа үзлээ гэхгүй. Интернет сургалтын хамгийн том давуу тал энэ. Зарим хичээлийг үзэхийн тулд багахан төлбөр төлөх хэрэгтэйг Бүртгүүлэх, тусгай эрх нээлгэх нийтлэлээс үзээрэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 293

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 370

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 435

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 484

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 508

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 601

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 692

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 730

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1136

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 752

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 822