Өнцгийн төрлүүд

Геометрийг ойлгоход өнцөг ойлголт ихээхэн чухал. Бодлогын нөхцөлд өнцгүүдийн төрлүүд их орж ирдэг тул тэдгээрийг нэр, хэлбэр, шинжээр нь мэдэж байх хэрэгтэй. Өнцгүүд өөрийн хэмжээнээс хамааран тусдаа нэрүүдтэй.

Геометрийн ухагдхуунуудыг сайн ойлгохгүйгээр бодлогод тэдгээрийг ашиглах бараг боломжгүй тул Хавтгайн геометр хичээлийн багцыг үзэхийг зөвлөе.

  • Хэмжээ нь 90 градусаас бага өнцгийг хурц өнцөг гэнэ.
  • Талууд нь бие биедээ перпендикуляр өнцгийг тэгш өнцөг гэнэ. Тэгш өнцгийг d үсгээр тэмдэглэдэг бөгөөд 900 -тай тэнцүү. Тэгш өнцгийг ихэнхдээ нумаар биш булангаар тэмдэглэдэг.

    тэгш өнцгүүд. Өнцгүүдийн ерөнхий OC талыг AB шулууны перпендикуляр гэж нэрлэх ба O цэгийг перпендикулярийн суурь гэдэг. Хоёр тэгш өнцгийн нийлбэр дэлгэмэл өнцөгтэй тэнцүү тул тэгш өнцөг нь дэлгэмэл өнцгийн хагастай тэнцүү.
  • Тэгш өнцгөөс их дэлгэмэл өнцгөөс бага хэмжээтэй өнцгийг мохоо өнцөг гэнэ. Өөрөөр хэлбэл хэмжээ нь 90 градусаас их 180 градусаас бага гэсэн үг.
  • Хоёр нэмэлт цацрагаар үүссэн өнцгийг дэлгэмэл өнцөг гэнэ. Дэлгэмэл өнцөг хоёр тэгш өнцөгтийн нийлбэртэй тэнцүү буюу 2d эсхүл 180 градус байна.
  • Дэлгэмэл өнцгөөс их ч бүрэн өнцгөөс бага хэмжээтэй өнцгийг гүдгэр өнцөг гэнэ. Өөрөөр хэлбэл 180 ба 360 градусийн хооронд хэмжээтэй өнцөг.
  • Өнцгийн хоёр тал нэг цацрагт давхацсан өнцгийг бүрэн өнцөг гэнэ. Бүрэн өнцөг дөрвөн тэгш өнцөгт 4d буюу 360 градустай тэнцэнэ.

Санамж: Дээрх зурагт үзүүлсэн өнцгүүдийн нэр, шинжүүдийг цээжээр мэдэж байх хэрэгтэй. Учир нь бодлогын нөхцөлд өнцгүүдийг нэрээр нь ихээр өгдөг. Хэрвээ өнцгийн нэрээр тухайн өнцгийг ямар хэлбэртэйг шууд тодорхойлж чадахгүй бол хүнд асуудалд орно гэдгийг сануулъя. Сурагчид хурц, тэгш, мохоо өнцгөөс бусдыг сайн мэддэггүй.

Зэргэлдээ өнцгүүд   

Зэргэлдээ өнцгүүд гэдэг нь ерөнхий орой ба талтай харин нөгөө талууд нь ерөнхий талын эсрэг талуудад байрлах хос өнцгийг хэлнэ.

- зэргэлдээ өнцгүүд. O - ерөнхий орой, OB - ерөнхий тал.
Дурын өнцгийн оройгоос өнцгийг хоёр хэсэгт хуваах цацрагийг татвал үүсэх өнцгүүд зэргэлдээ өнцгүүд байна. Цацрагаар хуваагдсан өнцгийг үүссэн өнцгүүдийн нийлбэр гэж нэрлэнэ.

AOB нь AOC, COB өнцгүүдийн нийлбэр юм. Өөрөөр хэлбэл гэсэн үг. Эндээс AOC, COB өнцгүүдийг AOB өнцөг нөгөө нэг зэргэлдээ өнцгийн ялгавар гэж нэрлэдэг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 38 Төлбөртэй

Тэгш хэм гэдэг нь тухайн обьект эсхүл түүний хэсэг тэгш хэмийн төв гэж нэрлэдэг тодорхой цэг, тэнхлэг, хавтгайтай харьцангуйгаар ижил хэмжээ, пропорционалаар байршихыг хэлнэ. Энгийнээр хэлбэл тэгш хэмийн төвтэй харьцангуй байршиж буй хэсгүүд ижилхэн бол үүнийг тэгш хэмтэй гэж хэлнэ.

  Нээгдсэн тоо: 7603 Бүртгүүлэх

x нь a д тэмүүлэх үед дурын ε>0 хувьд нөхцлийг хангах ε тооноос хамаарсан δ(ε) тоо олдож байвал L тоог f(x) функцын хязгаар гэнэ.
гэж тэмдэглэнэ.
Энэ тодорхойлолт нь x нь a -д ойртох тутам f(x) функцын утга нь L тоонд хязгааргүй ойртоно гэдгийг илэрхийлж байна. Хязгаарын геометр утга нь дурын ε>0 хувьд x нь (α-δ, α+δ) мужид байхад функцын утга нь мужид орших δ тоог олж болно. Тодорхойлолт ёсоор функцын аргумент нь зөвхөн a -д ойртдог болохоос биш энэ утгыг авахгүй гэдгийг анхааралдаа авах хэрэгтэй. Энийг ямар ч функцын хязгаарыг олохдоо түүний тасралтын цэг дээр санаж байх хэрэгтэй.

  Нээгдсэн тоо: 5600 Нийтийн

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

  Нээгдсэн тоо: 5941 Нийтийн

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 5

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 15

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 15

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 27

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 26

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 27

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 24

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 37

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 43

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2764

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 656

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 691