Алгебрийн нийлбэр

Ялгавар дахь хасагдагчийг эсрэг тэмдэгтэйгээр авбал ялгаварыг нийлбэрээр сольж болно. Нийлбэрийн энэ шинжийг

a - b = a + (-b)

ерөнхий томьёогоор илэрхийлж болно. Эндээс дурын ялгаварыг нийлбэрээр сольж болохыг энэ томьёо илэрхийлнэ. Иймээс алгебрт хасах, нэмэх үйлдэлүүд оролцсон дурын илэрхийллийг нийлбэр гэж үзэж болно.

Жишээ нь 2x - y2 = 2x + (-y2);  -21 + n - m = - 21 + n + (-m) гэх мэтээр. Ийм илэрхийллүүдийг алгебрийн нийлбэр гэдэг.
Алгебрийн нийлбэр гэдэг нь эерэг ба сөрөг тоонуудын нийлбэр хэлбэрээр илэрхийлж болох илэрхийлэл юм.

Санамж: Алгебрийн нийлбэрт эерэг тооны өмнө + тэмдэгийг тавихгүйгээр илэрхийллийн эхэнд байгаа сөрөг тоо хаалтанд авахгүйгээр хураангуйлж бичдэг. Жишээ нь (-5) + (+7) = -5 + 7. Үүнээс гадна алгебрийн илэрхийлэлд + тэмдэгтэй нэмэгдхүүн байвал түүнийг илэрхийллийн эхэнд бичдэг. Жишээ нь -2x - y + 3z илэрхийллийг 3z - 2x - y гэж бичнэ.

Алгебрийн нийлбэрийн шинжүүд

Дурын нийлбэрт нэмэгдхүүнүүдийг ямарч байдлаар байрыг солих, бүлэглэн нэгтгэж болно. Өөрөөр хэлбэл нийлбэрийн байр солих, бүлэглэн нэгтгэх шинжүүдийг ашиглах боломжтой.

a + b = b + a
a + b + c = (a + b) + c = a + (b + c) = (a + c) + b

Жишээ нь
10 + (-7) = -7 + 10 = 3
-7 + 28 + (-13) + 12 = (-7 + (-13)) + (28 + 12) = -20 + 40 = 20

Зөвлөмж: Сүүлийн жилүүдэд ЭЕШ -ийн сонгох хэсгийн материалд онолын ерөнхий мэдлэгийг сорьсон бодлого гэхээсээ асуулт хэлбэрийн даалгаварууд орж ирэх болсон. Иймээс онолын ерөнхий мэдлэгийн бэлтгэлийг сайн хийхийг зөвлөе. Жишээ нь ямар нэгэн илэрхийлэл өгөгдөөд түүний алгебрийн нийлбэрийг олох даалгавар байвал танд бодоод байх зүйл байхгүй зөвхөн онолоор яаж бичдэгийг л мэдэх хэрэг гарна. Иймээс ухагдхууныг сайн ойлгон аваад өөрөө хэсэг илэрхийллийг алгебрийн нийлбэрээр илэрхийлэн дасгал хийгээрэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 85 Бүртгүүлэх

Тоонуудын нэмэх үйлдэл ашигладаг аргачлалуудын талаар авч үзье.

Нэг оронтой тоонуудыг нэмэх

Нэг оронтой тоонуудын нийлбэрийг олохдоо

arif03_07_01

нэмэх хүснэгтийг ашиглан хийдэг. Дээрх хүснэгтийг 1 -ээс 9 хүртэлх дурын хоёр тооны нийлбэр болон хасагдагч нь 18 тай тэнцүү буюу бага хасагч нь 1 -ээс 9 хүртэлх тоонуудын ялгаварыг олоход ашиглана.

  Нээгдсэн тоо: 4147 Бүртгүүлэх

Логарифмын үндсэн адитгал

N эерэг тооны (b>0,b≠1) суурьтай логарифм гэдэг нь N ийг гаргах b гийн x зэрэг илтгэгчийг хэлнэ. Логарифмыг доорх байдлаар тэмдэглэнэ.
Энэ бичлэг нь гэсэнтэй адил.

Жишээ:

Логарифмын тодорхойлолтыг адитгал байдлаар бичиж болно.

  Нээгдсэн тоо: 3286 Төлбөртэй

Тригнометрийн ямарч түвшингийн тэгшитгэлүүд эцэстээ тригнометрийн энгийн тэгшитгэлийн бодолтонд шилждэг. Иймд тригнометрийн энгийн тэгшитгэлийг бодож сурсан байх нь зайлшгүй хэрэгтэй. Энэ үед хамгийн сайн туслах бол тригнометрийн нэгж тойрог байдаг. Синус болон косинусын тодорхойлолтыг санацгаая.
Өнцгийн косинус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн абсцисс байдаг. Өөрөөр хэлбэл цэгийн OX тэнхлэг дээрх координат юм.
Өнцгийн синус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн ординат байдаг. Өөрөөр хэлбэл цэгийн OY тэнхлэг дээрх координат юм.  
Эдгээр тодорхойлолтыг тригнометрийн энгийн тэгшитгэлүүдийг бодоход хэрхэн ашиглахыг энэ хичээлээр авч үзье.

  Нээгдсэн тоо: 9108 Төлбөртэй

Элсэлтийн ерөнхий шалгалтын материалд вектортой холбоотой бодлогууд орж ирэх нь элбэг байдгийн дээр геометрийн зарим бодлогуудыг векторын үйлдлүүдийг ашиглан их амархан шийдэх боломжтой. Иймээс энэ хичээлээр вектор, координатын суурь бодлогууд болох

  • Векторын координатыг түүний эхлэл ба төгсгөлийн координатаар хэрхэн олох
  • Координатууд нь өгөгдсөн үед векторын уртыг хэрхэн олох
  • Хоёр векторын нийлбэр, ялгавар векторын координатыг хэрхэн олох
  • Хэрчмийн дундажийн координатыг хэрхэн олох
  • Векторуудын скаляр үржвэр гэж юу болох
  • Вектор хоорондын өнцгийг хэрхэн олох

талаар авч үзэх юм. Эдгээр бодлогуудыг бодож сурсан байхад ЕБС-ийн хөтөлбөрт багтах вектортой холбоотой бүхий л бодлогыг шийдэх чадвартай болно. Огторгуй дахь вектор координатын үйлдлүүд хавтгайн дүрэмтэй яг ижлээр хийгддэг. Энд зөвхөн гуравдагч координат л нэмэгдэн орж ирдэг.

Делегат нь аргыг заасан обьектоор илэрхийлэгдэнэ. Өөрөөр хэлбэл делегат гэдэг нь аргын заагч бөгөөд түүгээр тухайн аргыг дуудаж…

Нээгдсэн тоо : 15

 

Энэ хичээлээс эхлэн олон хуудастай төслийг үүсгэн хуудас хооронд шууд буюу дахин ачаалалтгүйгээр шилжин удирдах боломжийн талаар үзэх…

Нээгдсэн тоо : 16

 

Хавтгай дээрх ямар нэгэн A цэг болон a шулууны хувьд уг хавтгайд a шулуунтай харьцангуй тэгш хэмтэй зөвхөн нэг A1

Нээгдсэн тоо : 22

 

Арифметикт суралцаж буй сурагчид арифметикийн үндсэн дөрвөн үйлдлийн дүрэм болоод үйлдлүүдийг оновчтой хурдан хийх аргыг маш сайн эзэмших…

Нээгдсэн тоо : 26

 

Төлөв байдлын үүргийн гинж (Chain of responsibility) загварчлалын хэв шаардлагыг хэд хэдэн обьектууд боловсруулах боломжийг олгодог тул шаардлагын…

Нээгдсэн тоо : 22

 

Онцгой нөхцлийг дуудсан кодийг try блок эсхүл онцгой нөхцлийг боловсруулах catch блокгүй try..catch бүтцэд байршуулсан бол систем тохирох…

Нээгдсэн тоо : 30

 

Програмийн цэсийн хэрэгжүүлэлтийн компонентийг хийсний дараа хуудсаа нээгээд fa-bars икон дээр дарахад

дээрх байдлаар харагдаж…

Нээгдсэн тоо : 31

 

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Нээгдсэн тоо : 33

 

Төлөв (State) бол дотоод нөхцлөөс хамааран обьект өөрийн төлөв байдлыг өөрчлөх боломж олгодог загварчлалын хэв.

Нээгдсэн тоо : 37

 
Энэ долоо хоногт

a ба b нь 5x2+x-2=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 1172

 

Өсөх геометр прогресс үүсгэх гурван тооны 3 дахь нь 12 -той тэнцүү. Хэрвээ 12-ыг 9 -өөр соливол эдгээр гурван тоо нь арифметик прогресс үүсгэх бол тоонуудын нийлбэрийг ол.

Нээгдсэн тоо : 1534

 

утгыг ол.

Нээгдсэн тоо : 219