Үелэх бутархай

Бутархай хэсэгт зарим тоонууд хязгааргүй давтагдсан бутархайнууд байдаг. Ийм бутархайнуудын бичлэг 0,666666...; 1,33333...; 0,6818181818... гэж харагдах бөгөөд эдгээрийг үет бутархай гэж нэрлэдэг. Хичээлээр ийм бутархайнууд хэрхэн үүсдэг тэдгээртэй яаж ажиллахыг үзэх юм.

Үет бутархай үүсэх.

1-ийг 3 хуваавал эхлээд тэгээр өгөөд нэг үлдэнэ. Үлдэгдэл дээр тэг нэмээд 3 -аар өгөөд дахиад 1 үлдэнэ. Дахин тэг нэмээд 3-аар өгөөд дахиад нэг үлдэнэ. Эндээс 1:3=0,33333... гэсэн бутархай үүснэ.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2382 Нийтийн

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

  Нээгдсэн тоо: 3191 Төлбөртэй

1. Дээд эрэмбийн зарим тэгшитгэлийг квадрат тэгшитгэлийг ашиглан бодож болно. Тэгшитгэлийн зүүн талыг хоёроос ихгүй зэрэгтэй үржигдхүүнээр задлана. Тэгээд үржигдхүүн болгоныг тэгтэй тэнцүүлж квадрат эсвэл шугаман тэгшитгэлийг бодсноор анхдагч тэгшитгэлийн бүх шийдийг олно.

Жишээ
тэгшитгэлийг бод.

Бодолт
Тэгшитгэлийн зүүн талыг үржвэрт задалбал.
болно. Эндээс x2=0 тэгшитгэлийн шийд нь x1=x2=0 гэж гарна.
Одоо тэгшитгэлийг бодвол x3=1, x4=-3 гэж гарна
Тэгэхлээр анхны тэгшитгэл нь x1=0, x2=0, x3=1, x4=-3 гэсэн 4 шийдтэй болно.

  Нээгдсэн тоо: 7287 Нийтийн

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

  Нээгдсэн тоо: 4741 Нийтийн

Зарим тодорхой интегралууд



Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 9

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 18

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 16

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 38

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 657

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693