Энгийн бутархайн үйлдлүүд

Бутархайг өргөтгөх.

Бутархайн хүртвар ба хуваарийг 0 -ээс ялгаатай тоогоор үржүүлбэл бутархайн утга өөрчлөгдөхгүй. Энэ хувиргалтыг бутархайг өргөтгөх гэнэ. Жишээ нь



Бутархайг хураах.

Бутархайн хүртвар ба хуваарийг 0 -ээс ялгаатай тоонд хуваалбал бутархай өөрчлөгдөхгүй. Энэ үйлдлийг бутархайг хураах гэнэ. Жишээ нь

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1144 Төлбөртэй

ЕБС -д матриц, хуурмаг тоо, вектор гэх зэрэг хэдэн сэдвийг өнгөцхөн үздэгээс болоод сурагчид ийм төрлийн бодлогуудыг бодохдоо тааруухан байдаг. Ямарч бодлогыг шийдэхэд онолын мэдлэг заавал хэрэгтэй. Өөрөөр хэлбэл бодлогын шийдийг гаргаж буй томьёо, теорем, аргачлалын учрыг ойлгоогүй эсхүл дутуу ойлголтоос л алдаа гаргадаг. Хичээлээр матрицийг үйлдлүүдийн талаар үзье.
2019 оны математикийн элсэлтийн шалгалтын материалд матрицийн үйлдлийн бодлогууд нилээд хэд орж ирсэн байсан.

  Нээгдсэн тоо: 1039 Нийтийн

Сурагчид арифметик үйлдэлд суралцаж байхдаа үйлдлийн бүрдүүлэгчдийн нэрийг сайн тогтоолгүй өнгөрөх гээд байдаг. Энэ нь алсдаа дунд болоод ахлах ангийн шалгалт, шүүлэгт ирж буй бодлогын нөхцлийг ойлгоход тодорхой хүндрэлийг үүсгэдэг. Жишээ нь бодлогын нөхцөлд нэмэгдхүүн, хасагч, ялгавар, нийлбэр гэх мэтээр оноосон нэрийг ашигласан байхдаг. Хэрвээ эдгээр нэрүүд юуг хэлж байгааг мэдэхгүй бол нөхцлийг ойлгоход хэцүү. Энэ мэт хайнга хандлагаас болоод сурагчид математикийн хичээлд дургүй болох хандлагатай болж ирдэгийг сануулъя.    

  Нээгдсэн тоо: 8339 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

  Нээгдсэн тоо: 4002 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 275

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 359

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 325

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 421

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 468

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 495

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 583

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 668

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 705

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1545

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2004

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 985