Пифагорийн теорем

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Пифагорийн теорем

Тэгш өнцөгт гурвалжны гипотенузийн квадрат катетуудын квадратуудын нийлбэртэй тэнцүү. Математикийн хэлээр бол

Хэрвээ өнцөг A=900 бол a2+b2=c2 гэсэн үг.

Баталгаа

a, b катетуудтай c гипотенузтай тэгш өнцөгт

гурвалжинг авч үзье. Дээрх гурвалжинг нэмэлт байгуулалтаар a+b талтай квадрат болгон

өргөжүүлье. Энэхүү квадратийн талбай S=(a+b)2 байх нь ойлгомжтой. Нөгөө талаас дээрх квадрат ab/2 талбайтай дөрвөн ижилхэн гурвалжин c талтай квадратаас бүрдэнэ. Эндээс квадратийн талбай

буюу

болно гэсэн үг. Нийлбэрийн квадратийн томьёогоор гэдгээс дээрх тэнцэл болсноор теорем батлагдана.

Пифагорийн урвуу теорем

Гурвалжны нэг талын квадрат нь нөгөө хоёр талынхаа квадратуудын нийлбэртэй тэнцүү бол гурвалжин тэгш өнцөгт байна. Математикийн тодорхойлолтоор бол

Хэрвээ a2+b2=c2 бол ABC гурвалжин тэгш өнцөгт байна.

Баталгаа

a2+b2=c2 байх a, b, c талуудтай ABC гурвалжны

өнцөг A=900 гэдгийг батлая. Үнний тулд A1=900 , A1B1=a, A1C1=b -тэй тэнцүү

A1B1C1 гурвалжинг авч үзье. Пифагорийн теоремоор A1B1C1 гурвалжны хувьд байх ёстой. Харин Пифагорийн теоремийн тодорхойлолтоор a2+b2=c2 бөгөөд эндээс гэсэн дүгнэлтийг хийж болно. Иймээс ABC , A1B1C1 гурвалжингуудын гурван талууд тэнцүү тул буюу ABC гурвалжин тэгш өнцөгт гэдэг нь батлагдана.

Хүсэлт: Хичээл танд таалагдсан бол нийтийн сүлжээний логоний зурагт дээр даран бусдад тараахыг хичээнгүйлэн хүсье.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2808 Нийтийн

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

  Нээгдсэн тоо: 723 Бүртгүүлэх

Адитгал гэдэг бол тэнцүүгийн тэмдгийн хоёр тал адил буюу тэнцүү идэрхийллээр илэрхийлэгдэх тэнцэл. Адитгалууд үсгэн ба тоон гэж хуваагдана.

Адитгал илэрхийлэл

Алгебрийн хоёр илэрхийлэл үсгүүдийн дурын тоон утганд ижил тоон хэмжээстэй байвал тэдгээрийг адитгал буюу тэнцүү гэж нэрлэдэг.

Жишээ нь x(5 + x) ба 5x + x2 илэрхийллүүд адитгал илэрхийллүүд юм. Учир нь илэрхийллүүд x -ийн дурын утганд бие биетэйгээ тэнцүү утгыг өгнө. Иймээс эдгээрийг адитгал буюу адил тэнцүү гэж нэрлэж болно.
Үүнээс гадна өөр хоорондоо тэнцүү тоон илэрхийллүүдийг адитгал гэж нэрлэж болно.
Жишээ нь 20 - 8 ба 10 + 2 илэрхийллүүдийг адитгал гэж болно.

  Нээгдсэн тоо: 8033 Бүртгүүлэх

x2=a гэсэн дутуу квадрат тэгшитгэлийг авч үзье. Энд a - тодорхой тоо. Энэ тэгшитгэлийн шийд нь

болно.

Энд гурван тохиолдол гарна.

1. Хэрвээ a=0 бол x=0
2. Хэрвээ a нь эерэг тоо бол тэгшитгэл эерэг, сөрөг хоёр шийдтэй.

Жишээ
тэгшитгэл нь 5, -5 гэсэн хоёр шийдтэй. Шийдийг дараах хэлбэрээр гэж бичдэг.

  Нээгдсэн тоо: 334 Бүртгүүлэх

Нийлбэрт нэмэх үйлдлийн үр дүн мэдэгдэхгүй байхад нийлбэрийг хэрхэн олох аргыг судлан сураад байгаа. Тэгвэл нийлбэрийн нэг бүрдүүлэгч буюу нэмэгдхүүн мэдэгдэхгүй байвал яах вэ? гэсэн асуулт зүй ёсоор гарч ирнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 145

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 211

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 178

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 297

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 326

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 334

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 406

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 406

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 482

 
Энэ долоо хоногт

Тэгш өнцөгт параллелепипедын диагнал түүний 3 ба 4 хэмжээтэй талстад 60 градусын өнцгөөр налсан бол диагоналын урт хэд вэ?

Нээгдсэн тоо : 1279

 

Суурийн радиус нь 4 см байх шулуун дугуй цилиндрийн нэг үзүүрээс зурагт үзүүлснээр хавтгайгаар огтлоход хамгийн урт байгуулагч нь 15 см, хамгийн богино байгуулагч нь 9 см болсон бол үүссэн биетийн эзэлхүүнийг ол.

Нээгдсэн тоо : 2926

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 203