Пифагорийн теорем

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Пифагорийн теорем

Тэгш өнцөгт гурвалжны гипотенузийн квадрат катетуудын квадратуудын нийлбэртэй тэнцүү. Математикийн хэлээр бол

Хэрвээ өнцөг A=900 бол a2+b2=c2 гэсэн үг.

Баталгаа

a, b катетуудтай c гипотенузтай тэгш өнцөгт

гурвалжинг авч үзье. Дээрх гурвалжинг нэмэлт байгуулалтаар a+b талтай квадрат болгон

өргөжүүлье. Энэхүү квадратийн талбай S=(a+b)2 байх нь ойлгомжтой. Нөгөө талаас дээрх квадрат ab/2 талбайтай дөрвөн ижилхэн гурвалжин c талтай квадратаас бүрдэнэ. Эндээс квадратийн талбай

буюу

болно гэсэн үг. Нийлбэрийн квадратийн томьёогоор гэдгээс дээрх тэнцэл болсноор теорем батлагдана.

Пифагорийн урвуу теорем

Гурвалжны нэг талын квадрат нь нөгөө хоёр талынхаа квадратуудын нийлбэртэй тэнцүү бол гурвалжин тэгш өнцөгт байна. Математикийн тодорхойлолтоор бол

Хэрвээ a2+b2=c2 бол ABC гурвалжин тэгш өнцөгт байна.

Баталгаа

a2+b2=c2 байх a, b, c талуудтай ABC гурвалжны

өнцөг A=900 гэдгийг батлая. Үнний тулд A1=900 , A1B1=a, A1C1=b -тэй тэнцүү

A1B1C1 гурвалжинг авч үзье. Пифагорийн теоремоор A1B1C1 гурвалжны хувьд байх ёстой. Харин Пифагорийн теоремийн тодорхойлолтоор a2+b2=c2 бөгөөд эндээс гэсэн дүгнэлтийг хийж болно. Иймээс ABC , A1B1C1 гурвалжингуудын гурван талууд тэнцүү тул буюу ABC гурвалжин тэгш өнцөгт гэдэг нь батлагдана.

Хүсэлт: Хичээл танд таалагдсан бол нийтийн сүлжээний логоний зурагт дээр даран бусдад тараахыг хичээнгүйлэн хүсье.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2751 Төлбөртэй

Олон төрлийн бодлого, хувиргалт хийхэд тригнометрийн өнцөг хаана аль үед байрлаж байгаагаас хамааран тэдгээрийн тэмдгийг тооцох хэрэгтэй болдог. Иймээс тригнометрийн функцуудын тэмдгийг мэддэг байх нь туйлын чухал. Гэхдээ эдгээрийг цээжилнэ гэвэл хүнд бөгөөд алдаа гаргах өндөр магадлалтай тул тэмдгийн учрыг ойлгох хэрэгтэй. Энэ нь илүү амар болоод найдвартайн дээр тригнометрийг ойлгох үндсэн нөхцлүүдийн нэг мөн.

  Нээгдсэн тоо: 3237 Төлбөртэй

хэлбэрийн тэгшитгэлийн системийг хоёр үл мэдэгдэгчтэй хоёр шугаман тэгшитгэлийн систем гэнэ.Энд a, b, c, d, e, f нь өгөгдссөн тоонууд. x, y нь үл мэдэгдэгчид. a, b, c, d тоонууд нь үл мэдэгдэгчдийн коэффициентүүд, e, f сул гишүүд. Ийм тэгшитгэлийн системийг үндсэн хоёр аргаар боддог.

Орлуулах арга

  1. Аль нэг тэгшитгэлээс аль нэг үл мэдэгдэгчийг жишээлбэл x-г нөгөө үл мэдэгдэгч y болон коэффициентүүдээр илэрхийлнэ. x=(c-by)/a [ 2 ]
  2. Хоёрдугаар тэгшитгэлд x -ийг орлуулж бичнэ. d(c-by)/a+ey=f
  3. Сүүлчийн тэгшитгэлээс y-г олно. y=(af-cd)/(ae-bd)
  4. y-ийн утгыг [ 2 ] илэрхийлэлд орлуулна. x=(ce-bf)/(ae-bd)

  Нээгдсэн тоо: 3815 Нийтийн

Олон бодлого бодоод байвал математикт сайжирна гэсэн яриа хүмүүсийн дунд өргөн тархсан байдаг. Бодлого ихээр бодох нь техник талаасаа сайн нөлөөтэй болохоос математикийг ойлгодог болгоно гэдэг эргэлзээтэй. Онолын мэдлэгтэй байх нь ямарч хичээлийн хувьд үндсэн асуудал. Онолгүйгээр хол явахгүй гэж ярьдаг үүнийг хэлж байгаа юм. Энэ удаад Виетийн теоремийн тухай үргэлжлүүлэн авч үзье. Теорем гэдэг нь баталгаа шаардлагатай тодорхойлолт буюу нотолгоо. Өмнөх Виетийн теорем хичээлд жишээ болгон авч үзсэн гурван тэгшитгэлд теорем ажиллаж байгаа ч ямарч тэгшитгэлд адилхан ажиллана гэдгийг батлах хэрэгтэй. Теоремийг нээн олсон математикчид өөрсдөө батлаад түүнийг нь бусад нь хүлээн зөвшөөрсөн учраас математикт теоремоор бүртгэсэн хэрэг. Өнөөг хүртэл жишээ нь Фермагийн их теорем гэдэг нотолгоо батлагдаагүй, олон тооны интегралууд бодогдоогүй байсаар л байгаа. Хүн өөрийн дэвшүүлсэн санаа, нотолгоог баталснаар тэр нь теорем болно.

  Нээгдсэн тоо: 595 Нийтийн

Тоог хэдэн нэгжээр, хэд дахин эсхүл тодорхой хувиар багасгаж болно.

Нэгжээр багасгах.

Тоог нэг эсхүл хэдэн нэгжээр багасгана гэдэг нь тухайн тооноос багасгах хэрэгтэй нэгжийг хасна гэсэн үг. Жишээ нь 13 -ыг 2 -оор багасгана гэдэг нь байгаа 13 нэгжээс 2 нэгжийг хасахийг хэлнэ.Үр дүнд нь 11 гарна. Эндээс "арвангуравыг хоёроор багасгах", "аравангураваас хоёрыг хасах" зэрэг нь эхний тооноос дараагийн тоог хасахийг л илэрхийлнэ.

Жишээ
15 -аас 4 ийг хас.
13 -ыг 2 -оор багасга

Бодолт
15 - 4 = 11
13 - 2 = 11

Нэрлэсэн тооны хувьд тухайн тоог багасгахдаа тоологдож буй зүйлтэй тохирох нэгжийг хасах ёстой.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 168

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 244

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 208

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 320

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 351

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 361

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 439

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 456

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 515

 
Энэ долоо хоногт

тэгшитгэлийг бод

Нээгдсэн тоо : 1503

 

4 хүнийг нэг эгнээнд хичнээн янзаар жагсах боломжтой вэ?

Нээгдсэн тоо : 1456

 

тэгшитгэлийн хамгийн бага эерэг шийдийг ол.

Нээгдсэн тоо : 577