Пифагорийн теорем

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Пифагорийн теорем

Тэгш өнцөгт гурвалжны гипотенузийн квадрат катетуудын квадратуудын нийлбэртэй тэнцүү. Математикийн хэлээр бол

Хэрвээ өнцөг A=900 бол a2+b2=c2 гэсэн үг.

Баталгаа

a, b катетуудтай c гипотенузтай тэгш өнцөгт

гурвалжинг авч үзье. Дээрх гурвалжинг нэмэлт байгуулалтаар a+b талтай квадрат болгон

өргөжүүлье. Энэхүү квадратийн талбай S=(a+b)2 байх нь ойлгомжтой. Нөгөө талаас дээрх квадрат ab/2 талбайтай дөрвөн ижилхэн гурвалжин c талтай квадратаас бүрдэнэ. Эндээс квадратийн талбай

буюу

болно гэсэн үг. Нийлбэрийн квадратийн томьёогоор гэдгээс дээрх тэнцэл болсноор теорем батлагдана.

Пифагорийн урвуу теорем

Гурвалжны нэг талын квадрат нь нөгөө хоёр талынхаа квадратуудын нийлбэртэй тэнцүү бол гурвалжин тэгш өнцөгт байна. Математикийн тодорхойлолтоор бол

Хэрвээ a2+b2=c2 бол ABC гурвалжин тэгш өнцөгт байна.

Баталгаа

a2+b2=c2 байх a, b, c талуудтай ABC гурвалжны

өнцөг A=900 гэдгийг батлая. Үнний тулд A1=900 , A1B1=a, A1C1=b -тэй тэнцүү

A1B1C1 гурвалжинг авч үзье. Пифагорийн теоремоор A1B1C1 гурвалжны хувьд байх ёстой. Харин Пифагорийн теоремийн тодорхойлолтоор a2+b2=c2 бөгөөд эндээс гэсэн дүгнэлтийг хийж болно. Иймээс ABC , A1B1C1 гурвалжингуудын гурван талууд тэнцүү тул буюу ABC гурвалжин тэгш өнцөгт гэдэг нь батлагдана.

Хүсэлт: Хичээл танд таалагдсан бол нийтийн сүлжээний логоний зурагт дээр даран бусдад тараахыг хичээнгүйлэн хүсье.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 981 Бүртгүүлэх

Тоон завсар гэдэг нь координатийн шулуунд дүрсэлж болох тоон ологлог юм. Тоон завсарт цацраг, хэрчим, интервал, хагас интервалууд орно. Тоон олонлогуудыг функцийн тодорхойлогдох болон утгын муж, тэнцэлтгэл бишийн шийдүүд, тэнцэтгэл биш зэрэгт өргөн ашигладаг тул тэдгээрийн хэлбэр, тэмдэглэгээг бүрэн ойлгон мэдсэн байх хэрэгтэй.

  Нээгдсэн тоо: 440 Төлбөртэй

Математикийн тоолол гэдэг нь ямар нэгэн зүйлийн тоог тодорхойлох зорилготой үйлдэл юм. Тоолол тоон эсхүл дарааллын байж болно.

  Нээгдсэн тоо: 5771 Бүртгүүлэх

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

  Нээгдсэн тоо: 4590 Нийтийн

Алгебрийн ухагдхуун, илэрхийлэл, тэгшитгэл, тэнцэл биш гээд бүхий л зүйлийн тэмдэглэгээнд латин болон грек үсгийг голдуу ашигладаг тул үсгүүдийг тогтоон цээжилсэн байх хэрэгтэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 265

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 345

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 317

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 413

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 457

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 486

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 570

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 653

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 688

 
Энэ долоо хоногт

тэгшитгэлийн хувьд утгыг ол

Нээгдсэн тоо : 2768

 

тэгшитгэлийн хамгийн их сөрөг язгуурыг ол.

Нээгдсэн тоо : 1091

 

тэнцэтгэл b -ийн ямар утганд биелэх вэ?

Нээгдсэн тоо : 719