Пифагорийн теорем

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Пифагорийн теорем

Тэгш өнцөгт гурвалжны гипотенузийн квадрат катетуудын квадратуудын нийлбэртэй тэнцүү. Математикийн хэлээр бол

Хэрвээ өнцөг A=900 бол a2+b2=c2 гэсэн үг.

Баталгаа

a, b катетуудтай c гипотенузтай тэгш өнцөгт

гурвалжинг авч үзье. Дээрх гурвалжинг нэмэлт байгуулалтаар a+b талтай квадрат болгон

өргөжүүлье. Энэхүү квадратийн талбай S=(a+b)2 байх нь ойлгомжтой. Нөгөө талаас дээрх квадрат ab/2 талбайтай дөрвөн ижилхэн гурвалжин c талтай квадратаас бүрдэнэ. Эндээс квадратийн талбай

буюу

болно гэсэн үг. Нийлбэрийн квадратийн томьёогоор гэдгээс дээрх тэнцэл болсноор теорем батлагдана.

Пифагорийн урвуу теорем

Гурвалжны нэг талын квадрат нь нөгөө хоёр талынхаа квадратуудын нийлбэртэй тэнцүү бол гурвалжин тэгш өнцөгт байна. Математикийн тодорхойлолтоор бол

Хэрвээ a2+b2=c2 бол ABC гурвалжин тэгш өнцөгт байна.

Баталгаа

a2+b2=c2 байх a, b, c талуудтай ABC гурвалжны

өнцөг A=900 гэдгийг батлая. Үнний тулд A1=900 , A1B1=a, A1C1=b -тэй тэнцүү

A1B1C1 гурвалжинг авч үзье. Пифагорийн теоремоор A1B1C1 гурвалжны хувьд байх ёстой. Харин Пифагорийн теоремийн тодорхойлолтоор a2+b2=c2 бөгөөд эндээс гэсэн дүгнэлтийг хийж болно. Иймээс ABC , A1B1C1 гурвалжингуудын гурван талууд тэнцүү тул буюу ABC гурвалжин тэгш өнцөгт гэдэг нь батлагдана.

Хүсэлт: Хичээл танд таалагдсан бол нийтийн сүлжээний логоний зурагт дээр даран бусдад тараахыг хичээнгүйлэн хүсье.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2651 Нийтийн

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

  Нээгдсэн тоо: 3067 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

  Нээгдсэн тоо: 5764 Бүртгүүлэх

Бутархайг өргөтгөх.

Бутархайн хүртвар ба хуваарийг 0 -ээс ялгаатай тоогоор үржүүлбэл бутархайн утга өөрчлөгдөхгүй. Энэ хувиргалтыг бутархайг өргөтгөх гэнэ. Жишээ нь



Бутархайг хураах.

Бутархайн хүртвар ба хуваарийг 0 -ээс ялгаатай тоонд хуваалбал бутархай өөрчлөгдөхгүй. Энэ үйлдлийг бутархайг хураах гэнэ. Жишээ нь

  Нээгдсэн тоо: 8979 Нийтийн

Тэгш зэргийн язгуур нь нэмэх, хасах гэсэн хоёр утгатай байдгийг бид мэднэ.
Учир нь (+5)2=25 бас (-5)2=25 байдаг.

Эерэг a тооны n зэргийн арифметик язгуур гэдэг нь ямар нэгэн эерэг тооны n зэрэг нь a тоотой тэнцүү байхыг хэлнэ.
Тооны n зэргийн алгебрын язгуур гэдэг нь энэ тооны бүх язгуурын олонлогийг хэлнэ. Тэгш зэргийн алгебрын язгуур нь эерэг, сөрөг хоёр утгатай байна.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 252

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 337

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 302

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 401

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 447

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 474

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 557

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 628

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 666

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1410

 

тэгшитгэл бод.

Нээгдсэн тоо : 1016

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1061