Пифагорийн теорем

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

Пифагорийн теорем

Тэгш өнцөгт гурвалжны гипотенузийн квадрат катетуудын квадратуудын нийлбэртэй тэнцүү. Математикийн хэлээр бол

Хэрвээ өнцөг A=900 бол a2+b2=c2 гэсэн үг.

Баталгаа

a, b катетуудтай c гипотенузтай тэгш өнцөгт

гурвалжинг авч үзье. Дээрх гурвалжинг нэмэлт байгуулалтаар a+b талтай квадрат болгон

өргөжүүлье. Энэхүү квадратийн талбай S=(a+b)2 байх нь ойлгомжтой. Нөгөө талаас дээрх квадрат ab/2 талбайтай дөрвөн ижилхэн гурвалжин c талтай квадратаас бүрдэнэ. Эндээс квадратийн талбай

буюу

болно гэсэн үг. Нийлбэрийн квадратийн томьёогоор гэдгээс дээрх тэнцэл болсноор теорем батлагдана.

Пифагорийн урвуу теорем

Гурвалжны нэг талын квадрат нь нөгөө хоёр талынхаа квадратуудын нийлбэртэй тэнцүү бол гурвалжин тэгш өнцөгт байна. Математикийн тодорхойлолтоор бол

Хэрвээ a2+b2=c2 бол ABC гурвалжин тэгш өнцөгт байна.

Баталгаа

a2+b2=c2 байх a, b, c талуудтай ABC гурвалжны

өнцөг A=900 гэдгийг батлая. Үнний тулд A1=900 , A1B1=a, A1C1=b -тэй тэнцүү

A1B1C1 гурвалжинг авч үзье. Пифагорийн теоремоор A1B1C1 гурвалжны хувьд байх ёстой. Харин Пифагорийн теоремийн тодорхойлолтоор a2+b2=c2 бөгөөд эндээс гэсэн дүгнэлтийг хийж болно. Иймээс ABC , A1B1C1 гурвалжингуудын гурван талууд тэнцүү тул буюу ABC гурвалжин тэгш өнцөгт гэдэг нь батлагдана.

Хүсэлт: Хичээл танд таалагдсан бол нийтийн сүлжээний логоний зурагт дээр даран бусдад тараахыг хичээнгүйлэн хүсье.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3045 Төлбөртэй

Хугархай эсхүл тахир шугам гэдэг нь нэг хэрчмийн төгсгөл нь дараагийн хэрчмийн эхлэл болсон дараалуулан холбосон геометрийн дүрс. Ийм холболтод зэрэгцээ орших буюу ерөнхий цэгтэй хэрчмүүд нэг шулуун дээр байрлах ёсгүй. Хэрвээ зэрэгцээ хэрчмүүд нэг шулуун дээр байвал эдгээр нь нэг хэрчим эсхүл хэрчмүүдийн нийлбэр болно гэдгийг Хэрчим хичээлд үзсэн.

  Нээгдсэн тоо: 14013 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

  Нээгдсэн тоо: 3161 Төлбөртэй

1. Дээд эрэмбийн зарим тэгшитгэлийг квадрат тэгшитгэлийг ашиглан бодож болно. Тэгшитгэлийн зүүн талыг хоёроос ихгүй зэрэгтэй үржигдхүүнээр задлана. Тэгээд үржигдхүүн болгоныг тэгтэй тэнцүүлж квадрат эсвэл шугаман тэгшитгэлийг бодсноор анхдагч тэгшитгэлийн бүх шийдийг олно.

Жишээ
тэгшитгэлийг бод.

Бодолт
Тэгшитгэлийн зүүн талыг үржвэрт задалбал.
болно. Эндээс x2=0 тэгшитгэлийн шийд нь x1=x2=0 гэж гарна.
Одоо тэгшитгэлийг бодвол x3=1, x4=-3 гэж гарна
Тэгэхлээр анхны тэгшитгэл нь x1=0, x2=0, x3=1, x4=-3 гэсэн 4 шийдтэй болно.

  Нээгдсэн тоо: 8231 Төлбөртэй

Математикт илэрхийлэл гэж юуг хэлэх вэ? Илэрхийлэлд хувиргалт хийх ямар хэрэгтэй вэ? гэсэн асуултууд танд сонин санагдаж магад. Учир нь эдгээр ойлголтууд бол математикийн үндэс юм. Математик бүхэлдээ илэрхийлэл, тэдгээрийн хувиргалтаас бүрдэнэ. Ойлгомжгүй байна уу. Тайлбарлая. Маш нүсэр бичлэгтэй, төвөгтэй жишээ байлаа гэе. Та математикт сайн тул айгаад байх зүйлгүй гэж бодъё. Тэгвэл шууд хариуг нь хэлж чадах уу? Үгүй шүү дээ.
Та энэ жишээг бодох л болно. Мэдээжээр ямар нэгэн дүрмийн дагуу алхам алхамаар жишээг хувирган эмхэтгэл хийнэ. Өөрөөр хэлбэл илэрхийлэлд хувиргалт хийнэ. Эдгээр хувиргалтуудыг хир сайн хийх нь таныг математикт төчнөөн сайныг илтгэнэ. Хэрвээ та хувиргалтыг зөв хийж чадахгүй бол математикт та юу ч хийж дийлэхгүйд хүрнэ. Ийм байдалд орохгүйн тулд илэрхийллийн тухай энэ удаа авч үзье. Илэрхийллийн хувиргалт хийж сурах нь бодлого бодох үндэс. Үүнийг сураагүй бол ямарч бодлогыг бодох талаар санаад ч хэрэггүй. Тэгэхлээр эхлээд математикт илэрхийлэл гэж юуг ойлгох, тоон болон алгебрын илэрхийлэл гэж юу болохыг тодруулъя.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 0

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 8

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 10

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 12

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 11

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 14

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 21

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 20

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 18

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 995

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2217

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 545