Тоонууд

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

Натурал тоо N.

Натурал тооны олонлогийг N={1,2,3,4 ...} гэж тэмдэглэдэг бөгөөд хааяа түүнд тэгийг нэмэн N0 гэж тэмдэглэнэ. Натурал тооны олонлогийн дурын тоонуудын хувьд нэмэх (+), үржих (*) үйлдэлд

шинжүүдийг тодорхойлсон байдаг. Натурал тоон олонлог үржих, нэмэх үйлдэлийн хувьд битүү байдаг. Өөрөөр хэлбэл ямарч натурал тоонуудыг хооронд нэмэх эсхүл үржихэд үр дүнд нь натурал тоо л гарна гэсэн үг. Байр солих, бүлэглэх, тэгээр үржих дүрмүүдийг хүмүүс сайн мэддэг. Нэмэх, үржих үйлдлүүдээс гадна натурал тооны олонлогийн дурын тоонуудын хувьд бага (<), бага буюу тэнцүү ( ) харьцааг

[PICTURE math10_50_03.gif]

шинжүүдтэйгээр тодорхойлдог.

Бүхэл тоо Z

1, -20, 100, -100, 25, 30, -31 эдгээр нь бүхэл тоонууд.
a+x=b тэгшитгэлд a, b - тодорхой натурал тоонууд харин x - үл мэдэгдэх натурал тоо гэвэл тэгшитгэлийн бодолтонд шинээр хасах (-) үйлдлийг оруулах шаардлагатай. x=b-a тэгшитгэлийг хангах x натурал тоо байдаг гэвэл энэхүү тэгшитгэл заавал N олонлогт шийдтэй байх албагүй учраас натурал тоон олонлогийг өргөжүүлэх хэрэгцээ гарна. Эндээс Z={0, 1, -1, 2, -2, 3, -3 ...} буюу бүхэл тоон олонлог гарч ирнэ.
Натурал тоон олонлог бүхэл тоон олонлогт багтаж байгаа учраас натурал тоон олонлогийн нэмэх (+), үржих (*) үйлдлүүд бага (<), бага буюу тэнцүү ( ) харьцаануудын шинжүүд Z олонлогт хүчинтэй байхын дээр

дээрх шинжүүд нэмэгдэнэ.

Рационал тоо Q

a·x=b тэгшитгэлийг авч үзье. Энд a, b тодорхой бүхэл тоонууд харин x - үл мэдэгдэгч. Тэгшитгэлийг бодохын тулд хуваах (:) үйлдлийг оруулан ирвэл тэгшитгэлийн шийд болно. Эндээс x байнга бүхэл тоон Z олонлогт тодорхойлогдохгүй гэдэг нь ойлгомжтой. Иймээс бүхэл тоон олонлогийг өргөжүүлэх шаардлага үүссэнээр элемент бүхий рационал тоон олонлог Q гарч ирдэг. q=1 гэвэл бүхэл тоо олонлог рационал тоон олонлогийн дэд олонлог буюу болох тул өмнөх олонлогуудын бүх дүрмүүд Q олонлогт хүчинтэйн байхын дээр нэмэх, үржих үйлдлүүд энэ олонлогт

дүрмээр хийгдэн харин хуваах үйлдэлд

дүрэм үйлчилнэ.
a≠0 үед Q олонлогт a·x=b тэгшитгэл цорын ганц шийдтэй. Тэгд хуваалт тодорхойлогдохгүй. Эндээс Q олонлогт
шинжтэй эсрэг элемент байдгийг тодорхойлно. Q олонлогт харьцуулалтын шинжийг гэж өргөтгөж болно.
Q олонлогийн хоёр тооны хооронд хязгааргүй олон рационал тоонууд байж болдог нэгэн чухал шинж бий. Иймээс Q олонлогт зэрэгцээ орших рационал тоонууд гэж байдаггүй нь натурал, бүхэл тоон олонлогоос ялгаатай.
тоонууд бол рационал тоонуудын жишээ.

Иррационал тоо I

Дурын хоёр рационал тоонуудын хооронд хязгааргүй тооны өөр рационал тоонууд байж болно гэдгээс үүдэн рационал тоонууд маш нягт учраас түүнийг цааш өргөжүүлэх шаардлагагүй гэсэн алдаатай дүгнэлтийг хийхэд хүргэдэг. Бүр Пифагор ч өөрийн үедээ ийм алдааг хийж байсан. Гэсэн хэдий ч эрдэмтэд тэгшитгэлийн шийдийг рационал тооны олонлогт судлахдаа алдаатай дүгнэлтийг няцаажээ. Ийм тэгшитгэлийг бодохдоо квадрат язгуур гэдэг ойлголтыг бий болгосноор тэгшитгэлийн шийд хэлбэртэй болсон. a - тодорхой рационал тоо, x - үл мэдэгдэгч байх хэлбэрийн тэгшитгэл рационал тооны олонлогт дандаа шийдтэй байдаггүйгээс үүдэн тооны олонлогийг өргөтгөх хэрэгцээ гарч ирснээр иррационал тоон олонлог үүссэн. зэрэг тоонууд иррационал тоон олонлогт харьяалагдана. Иррационал тооны жишээнүүд

Бодит тоо R

Рационал ба иррационал тооны олонлогуудын нэгдэл бол бодит тоон олонлог юм. Рационал тоо олонлог бодит тоон олонлогт багтана гэдгээс түүнд хүчинтэй арифметик үйлдлүүд, харьцаанууд өөрийн шинжээ шинэ олонлогт хадгална гэж үзэж болохоор. Үүний баталгаа нь нилээд төвөгтэй учраас дээр дурдсан арифметик үйлдлүүд, харьцаануудын шинжүүдийг бодит тоон олонлогт аксиом байдлаар оруулдаг. Алгебрт ийм обьектыг талбар гэдгээс бодит тоон олонлогийг эрэмбэлэгдсэн талбар гэж үздэг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1472 Бүртгүүлэх

Бодлого бодохдоо квадратуудын ялгавар , кубуудын ялгавар томьёонуудыг ихээр ашигладаг. Тэгвэл дөрөв, тав гэх мэтээр n зэргийн ялгаваруудад тохирох

ерөнхий томьёо байдөг бөгөөд хичээлээр энэ томьёоны гаргалгааг сурцгаая.

  Нээгдсэн тоо: 389 Төлбөртэй

Тооны зууны нэг хэсгийг хувь гэнэ. Эндээс гурван хувь - зууны гурав, хорин хувь - зууны хорь гэх  мэтээр ойлгох хэрэгтэй. "Хувь" үгийг "%" тэмдгээр тэмдэглэдэг. Ямар нэгэн тооны 33% гэдэг нь тухайн тооны зууны 33 хэсэг буюу өөрөөр гэсэн үг. Тооцоололд "%" тэмдгийг бичдэггүй гэдгийг анхаарах хэрэгтэй. Тэмдгийг бодлогын нөхцөл болон эцсийн үр дүнд л бичиж болно.

  Нээгдсэн тоо: 2878 Бүртгүүлэх

Геометрийн ухагдхуунууд практикт ойр боловч сурагчид геометрийн бодлогын нөхцлийг ойлгон зураг гаргаж чадахгүй байх нь элбэг. Энэ нь бодлогын нөхцөлд өгөгдсөн ухагдхууныг зөв ойлгон аваагүйтэй шууд холбоотой асуудал. Иймээс сайтад хавтгайн геометрийн сэдвээр хичээлүүдийг бэлтгэн оруулах санаа төрлөө.

Цэг, шулуун, хэрчим, муруй, өнцөг, хугарсан шугам, тойрог, гурвалжин гэх мэтээр олон төрлийн геометрийн хавтгай дүрсүүд бий.

Дээрх зурагт үзүүлсэн дүрсүүдийг сайн ажиглавал эдгээрээс битүү шугамаар үүссэн тойрог, гурвалжин хоёрыг онцолж болохоор.

  Нээгдсэн тоо: 2359 Бүртгүүлэх

Хавтгай дүрсийн бүх хэмжээг нэг ижил тоо / ихэсгэх эсвэл багасгах / дахин өөрчлөхөд гарсан дүрс анхны дүрс хоёрыг төстэй гэнэ. Хоёр төстэй дүрсийн хувьд тэдгээрийн харгалзах өнцгүүд тэнцүү. Нэг дүрс дээрх A, B, C, D цэгүүд нь нөгөө дүрс дээрх a, b, c, d цэгүүдтэй харгалзаж байвал гэх мэт байна.
ABCDEF ба abcdef хоёр олон өнцөгт  /Зур. 37/ төстэй бол, тэдгээрийн өнцгүүд тэнцүү , харин талууд нь порпорционал байна.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 127

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 190

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 195

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 212

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 210

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 290

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 222

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 216

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 219

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2831

 

20 хувийн концентрацитай 18 гр уусмал дээр концентрацийг нь 4 хувиар нэмэгдүүлэхийн тулд 26 хувийн концентрацитай хичнээн грамм уусмал нэмж хийх шаардлагтай вэ?

Нээгдсэн тоо : 1265

 

тэгшитгэлийн шийдийг ол.

Нээгдсэн тоо : 1381