Математикийн томьёог зөв тогтоох

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

Сурагчид томьёонуудыг мэдээд байгаа хирнээ түүнийг бодлогод ашиглах тал дээр нилээд сул байдаг. Энэ нь дадлага дутсан эсхүл томьёогоо ойлголгүй шууд цээжилсэнтэй холбоотой. Дадлага дутаж байгаа бол асуудал гайгуй. Харин ойлгохгүйгээр цээжлэх бол асуудалтай. Бодлогод томьёог хэрэглэж чадахгүй байгаагийн шалтгаан аль нь болохыг та өөрөө ч олох боломжтой. Томьёогоо мэдэж байна уу. Тэгвэл нэг бодлогыг өөрөө бодох гээд үз. Чадахгүй бол бодолтыг нь хар. Энэ мэтээр 7 хоног ажиллаад үз. Долоо хоногийн дараа мэддэг томьёогоо хүндрэлгүй ашиглаж чаддаг болчихвол эхний шалтгаан байж. Харин долоо хоноход үр дүн муутай байвал хоёрдахь шалтгаан байх талтай. Гэхдээ мэдээж таны оролдлого зүтгэл их үүрэгтэй. Оргүйгээс охинтой гэдэг шиг та ядахдаа томьёогоо мэдэж байгаа шүү дээ.
Автоматаар цээжилсэн томьёог мартах нь амарахн байдаг. Тэгэхлээр томьёо хэрхэн зөв тогтоох вэ?
Зарим сурагчдаас нийлбэрийн квадратын томьёо гэж асуухад хариулж мэдэхгүй мөртлөө (a+b)2 гэж асуухад гээд шууд хэлж байгаа юм. Косинусын теоремыг гээд томьёололыг хэлээд байгаа мөртлөө үүнийгээ тайлбарлаж чадахгүй байх жишээтэй. Энэ бол томьёог автоматаар цээжилсний шинж. Үүнийг цээжилж чадаж байна гэдэг бас боломжийн.

Томьёог хэлбэрээр нь цээжлэх биш тодорхойлолтоор нь тогтоох хэрэгтэй.

Дээрх хоёр томьёог үгээр тодорхойлбол

  • Нийлбэрийн квадрат нь 1-р нэмэгдхүүний квадрат дээр нэмэгдхүүнүүдийн үржвэрийг хоёроор үржүүлэн нэмээд 2-р нэмэгдхүүний квадратыг нэмсэнтэй тэнцүү.
  • Косинусын теорем бол дурын гурвалжны хоёр тал ба тэдгээрийн хоорондох өнцөг мэдэгдэж байвал гуравдагч талын квадрат нь мэдэгдэж байгаа талуудын квадратуудын нийлбэрээс талуудын үржвэрийг хоёр дахин аваад тэдгээрийн хоорондох өнцгийн косинусаар үржүүлсэн үржвэрийг хассантай тэнцүү.

Яг ийм байдлаар бүх томьёоны тодорхойлолтыг мэддэг байх хэрэгтэй. Ингэж тогтоовол 1-рт амархан тогтооно, 2-рт мартах нь удаан, 3-рт бодлогод ашиглаж сурахад хөнгөн байдаг. Томьёог тодорхойлолтоор тогтоох шалтгааныг тайлбарлая.

  • Практикт a тэнцүү тэд, b тэнцүү тэд гээд (a+b)2 ол гэсэн бодлого бараг тохиолдохгүй. Ийм жишээнүүдийг зөвхөн сурах бичигт л тухайн сэдвийг ойлгуулахад зориулан оруулдаг. Түүнээс шалгалт, шүүлэгт ийм хэлбэрийн бодлого ирэх нь бараг үгүй. Илэрхийлэл эмхэтгэх, тэгшитгэл, тэнцэтгэл биш бодох үндсэн арга нь томьёонуудыг задгай байдлаас хураангуй бичлэгт шилжүүлэх байдаг. Жишээ нь илэрхийллээс бүтэн квадрат эсхүл куб ялгах гэх мэтээр. Иймд томьёонуудыг хоёр тал руу нь чөлөөтэй шилжүүлж чаддаг байх хэрэгтэй. Өөрөөр хэлбэл задгайгаас хураангуйд, хураангуйгаас задгайд гэсэн үг. Энд бас л томьёоны тодорхойлолт л тус болно.
  • Томьёоны илэрхийлэлд орж байгаа гишүүд /a, b, c, өнцөг гэх мэт/ бодлогын нөхцлөөс шалтгаалан язгуур доорх тоо, логарифм, тригнометрийн функц гээд янз бүр байж болно. Энэ үед нөгөө дасал болсон a, b, c -нууд байхгүй тул автомат цээжилсэн сурагчид хүнд байдалд ордог. Тодорхойлолтыг мэдэж байвал үүнд сандрах зүйлгүй. Жишээ нь нэмэгдхүүн эсхүл гурвалжны талууд ямарч байдлаар бүр функц байдлаар ч өгөгдөж болно.
  • Геометрийн бодлогууд зургаар өгөгдөх нь элбэг. Тэнд a нь энэ, b нь энэ гэж заахгүй. Зүгээр л зураг өгөгдөнө. Энэ үед автомат цээжилсэн томьёо бүр ажиллахгүй.
  • Үржүүлэхийн хураангуй томьёо, квадрат тэгштгэлийн шийдийг олох зэрэгт автоматаар цээжлээд ашиглаад байж болох талтай ч дүрс нь багахан өөрчлөгдөхөд л нам зогсох аюултай. Харин геометр, тригнометр гэх мэтийн байгуулалттай холбоотой томьёонуудыг заавал тодорхойлолтоор нь мэддэг байх хэрэгтэй

Энэ мэтээр олон тохиолдолыг дурдаж болно. Гэхдээ бүх томьёог тодорхойлолтоор нь ойлгож авна гэвэл бас боломжгүй. Жишээ нь уламжлал, интегралуудын үндсэн жагсаалтыг шууд цээжлэхээс өөр аргагүй. Учир нь ЕБС-д математик анализын эхлэлтэй дөнгөж танилцах хэмжээнд үздэг тул нарийн ойлгох боломжгүй. Энд цөөн хэдэн гол томьёонууд байдаг. Харин ЭЕШ -д зарим нэгэн томьёонуудыг хуудас дээр оруулан өгдөг нь их сайн зүйл. Хүн бүр бүх томьёог санаж байх албагүй шүү дээ.
Сайтын бодлогуудын бодолтуудад ашиглагдаж байгаа томьёонуудыг шууд оруулан өгсөн байгаа болохоор та бодолтыг үзэхдээ томьёонуудыг харсаар тэдгээрийг тогтоохын зэрэгцээ ямар төрлийн бодлогод ямар томьёонуудыг ашиглахыг сурах юм.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 28 Төлбөртэй

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд гаргадаг.

Жишээ нь 8 ба 8-1 эсхүл 8 ба 1/8 бол харилцан урвуу тоонууд. Хоёрдахь бичилт өөр хэлбэрээр бичснээс бас л урвуу тоонууд. Урвуу тоонуудыг үржүүлэхэд нэг гардаг. Жишээ нь 8 · 8-1 = 8 · 1/8 = 8/8 = 1

  Нээгдсэн тоо: 2996 Нийтийн

Аравтын бутархайг энгийн бутархай болгохдоо аравтын таслалын ардах тоог хүртвэр болгоод 10-ын n зэргийг хуваарь болгоно. n нь аравтын орны тоотой тэнцүү байна. Тэгээс ялгаатай бүхэл хэсэг нь хэвээрээ үлдэх бөгөөд тэг бүхлийг бичихгүй.

Жишээ

Энгийн бутархайг аравтын бутархай болгохдоо хүртвэрийг хуваарьт хуваана.

  Нээгдсэн тоо: 6965 Нийтийн

Хавтгайн геометрт хамгийн өргөн хэрэглэдэг дүрс бол гурвалжин. Гурвалжны шинж чанарууд бараг бүх бодлогод орж ирдэг гэхэд хилсдэхгүй. Иймээс гурвалжны шинж, чанаруудыг сайн ойлгон тогтоон авбал цаашид их хэрэгтэйг зөвлөе.
Гурвалжин гэдэг нь гурван холбоосоос бүрдсэн хаалттай тахир шугам. Тодорхойлолтыг тахир шугам хичээлийг үзэн зөв ойлгон тогтоож аваарай.

  Нээгдсэн тоо: 1405 Бүртгүүлэх

Бодлого бодохдоо квадратуудын ялгавар , кубуудын ялгавар томьёонуудыг ихээр ашигладаг. Тэгвэл дөрөв, тав гэх мэтээр n зэргийн ялгаваруудад тохирох

ерөнхий томьёо байдөг бөгөөд хичээлээр энэ томьёоны гаргалгааг сурцгаая.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 9

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 18

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 16

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 38

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 657

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693