Математикийн томьёог зөв тогтоох

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

Сурагчид томьёонуудыг мэдээд байгаа хирнээ түүнийг бодлогод ашиглах тал дээр нилээд сул байдаг. Энэ нь дадлага дутсан эсхүл томьёогоо ойлголгүй шууд цээжилсэнтэй холбоотой. Дадлага дутаж байгаа бол асуудал гайгуй. Харин ойлгохгүйгээр цээжлэх бол асуудалтай. Бодлогод томьёог хэрэглэж чадахгүй байгаагийн шалтгаан аль нь болохыг та өөрөө ч олох боломжтой. Томьёогоо мэдэж байна уу. Тэгвэл нэг бодлогыг өөрөө бодох гээд үз. Чадахгүй бол бодолтыг нь хар. Энэ мэтээр 7 хоног ажиллаад үз. Долоо хоногийн дараа мэддэг томьёогоо хүндрэлгүй ашиглаж чаддаг болчихвол эхний шалтгаан байж. Харин долоо хоноход үр дүн муутай байвал хоёрдахь шалтгаан байх талтай. Гэхдээ мэдээж таны оролдлого зүтгэл их үүрэгтэй. Оргүйгээс охинтой гэдэг шиг та ядахдаа томьёогоо мэдэж байгаа шүү дээ.
Автоматаар цээжилсэн томьёог мартах нь амарахн байдаг. Тэгэхлээр томьёо хэрхэн зөв тогтоох вэ?
Зарим сурагчдаас нийлбэрийн квадратын томьёо гэж асуухад хариулж мэдэхгүй мөртлөө (a+b)2 гэж асуухад гээд шууд хэлж байгаа юм. Косинусын теоремыг гээд томьёололыг хэлээд байгаа мөртлөө үүнийгээ тайлбарлаж чадахгүй байх жишээтэй. Энэ бол томьёог автоматаар цээжилсний шинж. Үүнийг цээжилж чадаж байна гэдэг бас боломжийн.

Томьёог хэлбэрээр нь цээжлэх биш тодорхойлолтоор нь тогтоох хэрэгтэй.

Дээрх хоёр томьёог үгээр тодорхойлбол

  • Нийлбэрийн квадрат нь 1-р нэмэгдхүүний квадрат дээр нэмэгдхүүнүүдийн үржвэрийг хоёроор үржүүлэн нэмээд 2-р нэмэгдхүүний квадратыг нэмсэнтэй тэнцүү.
  • Косинусын теорем бол дурын гурвалжны хоёр тал ба тэдгээрийн хоорондох өнцөг мэдэгдэж байвал гуравдагч талын квадрат нь мэдэгдэж байгаа талуудын квадратуудын нийлбэрээс талуудын үржвэрийг хоёр дахин аваад тэдгээрийн хоорондох өнцгийн косинусаар үржүүлсэн үржвэрийг хассантай тэнцүү.

Яг ийм байдлаар бүх томьёоны тодорхойлолтыг мэддэг байх хэрэгтэй. Ингэж тогтоовол 1-рт амархан тогтооно, 2-рт мартах нь удаан, 3-рт бодлогод ашиглаж сурахад хөнгөн байдаг. Томьёог тодорхойлолтоор тогтоох шалтгааныг тайлбарлая.

  • Практикт a тэнцүү тэд, b тэнцүү тэд гээд (a+b)2 ол гэсэн бодлого бараг тохиолдохгүй. Ийм жишээнүүдийг зөвхөн сурах бичигт л тухайн сэдвийг ойлгуулахад зориулан оруулдаг. Түүнээс шалгалт, шүүлэгт ийм хэлбэрийн бодлого ирэх нь бараг үгүй. Илэрхийлэл эмхэтгэх, тэгшитгэл, тэнцэтгэл биш бодох үндсэн арга нь томьёонуудыг задгай байдлаас хураангуй бичлэгт шилжүүлэх байдаг. Жишээ нь илэрхийллээс бүтэн квадрат эсхүл куб ялгах гэх мэтээр. Иймд томьёонуудыг хоёр тал руу нь чөлөөтэй шилжүүлж чаддаг байх хэрэгтэй. Өөрөөр хэлбэл задгайгаас хураангуйд, хураангуйгаас задгайд гэсэн үг. Энд бас л томьёоны тодорхойлолт л тус болно.
  • Томьёоны илэрхийлэлд орж байгаа гишүүд /a, b, c, өнцөг гэх мэт/ бодлогын нөхцлөөс шалтгаалан язгуур доорх тоо, логарифм, тригнометрийн функц гээд янз бүр байж болно. Энэ үед нөгөө дасал болсон a, b, c -нууд байхгүй тул автомат цээжилсэн сурагчид хүнд байдалд ордог. Тодорхойлолтыг мэдэж байвал үүнд сандрах зүйлгүй. Жишээ нь нэмэгдхүүн эсхүл гурвалжны талууд ямарч байдлаар бүр функц байдлаар ч өгөгдөж болно.
  • Геометрийн бодлогууд зургаар өгөгдөх нь элбэг. Тэнд a нь энэ, b нь энэ гэж заахгүй. Зүгээр л зураг өгөгдөнө. Энэ үед автомат цээжилсэн томьёо бүр ажиллахгүй.
  • Үржүүлэхийн хураангуй томьёо, квадрат тэгштгэлийн шийдийг олох зэрэгт автоматаар цээжлээд ашиглаад байж болох талтай ч дүрс нь багахан өөрчлөгдөхөд л нам зогсох аюултай. Харин геометр, тригнометр гэх мэтийн байгуулалттай холбоотой томьёонуудыг заавал тодорхойлолтоор нь мэддэг байх хэрэгтэй

Энэ мэтээр олон тохиолдолыг дурдаж болно. Гэхдээ бүх томьёог тодорхойлолтоор нь ойлгож авна гэвэл бас боломжгүй. Жишээ нь уламжлал, интегралуудын үндсэн жагсаалтыг шууд цээжлэхээс өөр аргагүй. Учир нь ЕБС-д математик анализын эхлэлтэй дөнгөж танилцах хэмжээнд үздэг тул нарийн ойлгох боломжгүй. Энд цөөн хэдэн гол томьёонууд байдаг. Харин ЭЕШ -д зарим нэгэн томьёонуудыг хуудас дээр оруулан өгдөг нь их сайн зүйл. Хүн бүр бүх томьёог санаж байх албагүй шүү дээ.
Сайтын бодлогуудын бодолтуудад ашиглагдаж байгаа томьёонуудыг шууд оруулан өгсөн байгаа болохоор та бодолтыг үзэхдээ томьёонуудыг харсаар тэдгээрийг тогтоохын зэрэгцээ ямар төрлийн бодлогод ямар томьёонуудыг ашиглахыг сурах юм.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4599 Нийтийн

Зарим тодорхой интегралууд



  Нээгдсэн тоо: 1851 Бүртгүүлэх

Арксинус, арккосинус, арктангенс, арккотангенс гэдэг ойлголтоос сурагчид нилээд айдаг. Эдгээр ухагдхууныг сайтар ойлгоогүйн улмаас түүнийг ашиглах, тэдгээртэй холбогдолтой бодлого бодохоос зайлсхийдэг. Өөрөөр хэлбэл айнаа л гэсэн үг. Гэхдээ эдгээр нь ойлгосон хүндээ тригнометрийн тэгшитгэлийг бодоход асар тус болдог энгийн л ойлголтууд гэдгийг та энэ хичээлийн эцэст мэдэн авах болно.
Синус, косинус, тангенс, котангенс талаар мэдэж байхад илүүдэхгүй. Тэдгээрийн зарим өнцгүүдийн утгууд гээд хамгийн ерөнхий зүйлийг мэдэж байхад асуудал үүсэхгүй ойлгоно.

  Нээгдсэн тоо: 2886 Нийтийн

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

  Нээгдсэн тоо: 3118 Нийтийн

Шугам гэдэг нь бие биетэйгээ дараалан байрласан цэгүүдийн олонлогоор үүсэх геометрийн дүрс.
Ямар ч шугамыг тодорхой замаар шилжиж буй цэгийн хөдөлгөөний мөр гэж үзэж болно. Жишээ нь цаасан дээр харандаагаар дарвал түүний бал цаасан дээр цэг буюу мөрийг үүсгэнэ. Харандааг цааш цаасан дээгүүр хөдөлгөвөл хөдөлгөөний замаар бал бие биетэйгээ дараалан байрлах цэгүүдийн олонлогийг үүсгэснээр шугам зурагдана.
Геометрийн шугамд өргөн гэсэн ойлголт байдаггүй гэдгийг тогтоон аваарай.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124