Өнцөг. Проекц. Олон талт өнцөг.

Өнцөг

Огтлолцсон хоёр шулууны хоорондох өнцгийг хавтгайн геометрийн адилаар хэмжинэ. Учир нь эдгээр шулууныг дайруулан хавтгай татаж болдог. Паралел хоёр шулууны хоорондын өнцөг нь 0 эсвэл . Зөрсөн AB ба CD /Зур. 70/ хоёр шулууны хоорондын өнцгийг дараах байдлаар тодорхойлно.
Дурын O цэгийг дайруулаад OM || AB ба ON || CD байх OM, ON цацрагийг татна. Тэгвэл AB ба CD гийн хоорондох өнцөг нь NOM тэй тэнцүү гэж үзнэ. Өөр хэлбэл AB ба CD шулууныг өөртөө нь паралел байдлаар огтлолцох хүртэл нь шилжүүлнэ гэсэн үг. Тухайлбал O цэгийг AB ба CD шулуунуудын аль нэг дээр авч болно. Энэ тохиолдолд O цэг нь хөдөлгөөнгүй байна.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 826 Нийтийн

Алгебр (арифметикийн адилаар) тоотой холбоотой төрөл бүрийн асуудлын шийдийг олох шинжлэх ухаан. Арифметик, алгебрын хоорондоо нилээд ялгаатай. Алгебр тоотой биш тоог төлөөлөх үсгүүдтэй голлон ажилладаг бол арифметикт тодорхой тоонууд дээр тухайн асуудлын шийдлийг олоход чиглэдэг. Эндээс эдгээр хоёр салбар ухааны гол ялгаа гэвэл алгебр асуудлын ерөнхий шийдлийг харин арифметик асуудлын тухайн тохиолдлын шийдлийг судалдагт оршино.

  Нээгдсэн тоо: 2016 Төлбөртэй

Модултай тэгшитгэлийг бодох I хичээлд модул гэж юу болох, үндсэн томьёоны талаар авч үзсэн. Жишээ болгон энгийн тэгшитгэүүдийг бодсноор модултай тэгшитгэлийг бодох алгоритм байж болох үндэслэлийг гарган ирсэн. Тэгвэл энэ хичээлээр модултай тэгшитгэлүүдийн төрлүүд тэдгээрийг хэрхэн бодох аргачлалд суралцая. Модул ухагдхууныг хүнд гэсэн ойлголтоос болоод сурагчид түүнийг судлан суралцахдаа хойрго хандах явдал бий. Хичээлийн материалыг ойлгохгүй бол дахин үзээд ойлгон авахыг хичээгээрэй. Таныг хичээлийг хэдэн удаа үзсэнг хэн ч мэдэхгүй ямарч зэмлэл, хариуцлага хүлээлгэхгүй, цаг хугацаанд ч шахагдахгүй байдал нь интернет сургалтын давуу тал шүү.

  Нээгдсэн тоо: 4285 Бүртгүүлэх

Хэсэгчлэн интегралчлах.

Хэрвээ u(x) , v(x) функцууд нь тасралтгүй нэгдүгээр эрэмбийн уламжлалтай, гэсэн интегралтай байвал гэсэн интеграл байхаас гадна тэнцэл биелж байна. Хураангуй бичлэг нь болно.
Хэсэгчлэн интегралчлах ба үржвэрийн дифференциалууд нь харилцан эсрэг үйлдлүүд гэдгийг сануулъя.

  Нээгдсэн тоо: 10432 Нийтийн

Магадлалын аксиом тодорхойлолт

Эгэл үзэгдлүүдийн олонлог E өгөгдсөн ба үзэгдэл бүрт :

  • P(A)≥0
  • хос харш үзэдлүүдийн хувьд:  тэнцэл биелнэ,
  • P(E)=1

харгалзсан цорын ганц P(A) тоо байна гэж үзье. Тэгвэл E олонлогийн үзэгдлүүдэд магадлал байна. P(A) тоог A үзэгдлийн магадлал гэж хэлнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 253

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 337

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 304

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 401

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 448

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 475

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 557

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 629

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 667

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1412

 

тэгшитгэл бод.

Нээгдсэн тоо : 1017

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1062