Бодлого бодож сурах нь IV

Илэрхийллийг үржигдхүүнд задлах 4 дэх аргад квадрат гурван гишүүнтийг задлах ордог тухай бид Бодлого бодож сурах нь I хичээлд дурдсан байгаа. Бид үржүүлэхийн хураангуй томьёог ашиглан үржигдхүүнд задлах хичээлийн эцэст x2-6x+8 илэрхийллийг бүлэглэх аргыг ашиглан үржигдхүүнд задалсан. Ийм төрлийн илэрхийллийг хэрхэн үржигдхүүнд задлах талаар энэ хичээлээр авч үзэх болно.

Квадрат гурван гишүүнтийг үржигдхүүнд задлах

Ямар нэгэн хувьсагчийн хоёрдугаар эрэмбийг агуулсан олон гишүүнтийг квадрат гурван гишүүнт гэдэг. Квадрат гурван гишүүнт

ax2+bx+c

ерөнхий хэрбэртэй байна. Энд a, b, c нь ямар нэгэн тодорхой тоонууд харин x нь янз бүрийн утгуудыг авч болно. x -ийн утгаас хамааран гурван гишүүнт төрөл бүрийн утгатай байх боломжтой гэдэг нь ойлгомжтой. Иймээс x-ийг олон гишүүнтийн аргумент гэж нэрлэдэг. Үүнийг жишээгээр x2-3x+2 олон гишүүнт дээр авч үзье. Олон гишүүнтийг y гэж тэмдэглэвэл y=x2-3x+2 гэж бичиж болно. Одоо x -д утгуудыг өгөхөд олон гишүүнтийн авч байгаа утгуудыг хүснэгтээр үзүүлбэл

x -1 0 1 2 3
y 6 2 0 0 2

Хүснэгтээс харвал x-ийн 1 ба 2 утганд олон гишүүнтийн утга тэг болсон. Эндээс доорх тодорхойлолт гарч ирнэ.

Гурван гишүүнтийн утгыг тэгтэй тэнцүүлэх аргументын утгуудыг түүний шийдүүд гэнэ.

Тодорхойлолтын дагуу бидний жишээгээр авсан гурван гишүүнтийн шийдүүд 1, 2 болж таарна. Эдгээр утгуудад олон гишүүнтийн утга тэгтэй тэнцүү болсон.
Квадрат гурван гишүүнтийг үржигдхүүнд задлах арга нь яг энэ шийдүүдийг ашигладаг. Олон гишүүнтийн шийдийг олохын тулд түүнийг тэгтэй тэнцүүлэн x -ийн утгыг хайна. Өөрөөр хэлбэл олон гишүүнтийг тэг утгатай байлгах аргументын утгыг олохын тулд ax2+bx+c=0 тэгшитгэлийг бодно гэсэн үг.Квадрат тэгшитгэлийг бодох аргаас түүний дискриминантаас хамааран тэгшитгэл хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болдог гэдгийг бид мэднэ. Энэ нь ч квадрат гурван гишүүнтэд бас хамаарагдана. Гурван гишүүнт бас хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болно. Иймээс тэгшитгэлийн дискриминантыг бас гурван гишүүнтийн дискриминант гэж нэрлэдэг.

Квадрат гурван гишүүнтийг задлах.

x2+px+q хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

y=x2+px+q гурван гишүүнт x1, x2 гэсэн шийдтэй гэж үзье. Тэгвэл x1, x2 нь x2+px+q=0 тэгшитгэлийн шийд болох ёстой. Нөгөө талаас Виетийн теоремоор x1+x2=-p; x1·x2=q байна. Эндээс -(x1+x2)=p; x1·x2=q болох бөгөөд утгуудыг гурван гишүүнд тавин хувиргалтыг хийвэл

гарна. Ингээд x2+px+q хэлбэрийн гурван гишүүнт гэж үржигдхүүнд задарлаа. Эндээс x2+px+q хэлбэрийн гурван гишүүнт шийдүүдтэй бол олон гишүүнт аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр үржигдхүүнд задарна гэсэн тодорхойлолтонд хүрлээ.

Жишээ
Бодлого бодож сурах нь III хичээлийн төгсгөлд үзсэн x2-6x+8 илэрхийллийг авч үзье.

Бодолт
Илэрхийллийг бид бүлэглэх аргаар үржигдхүүнд задалж байсан. Одоо илэрхийллийн дээрх аргаар үржигдхүүнд задлая. Гурван гишүүнтийн шийдийг олохын тулд x2-6x+8=0 тэгшитгэлийг бодох хэрэгтэй. Тэгшитгэлийг бодвол x1=2; x2=4 гэсэн шийдүүд олдоно. Тэгвэл өгөгдсөн илэрхийлэл x2-6x+8=(x-2)(x-4) байдлаар үржигдхүүнд задарна.

ax2+bx+c хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

Гурван гишүүнтийг y=ax2+bx+c гэж бичээд a≠0 , x1, x2 гэсэн шийдтэй гэж үзье. Гурван гишүүнтээс a -г хаалтны өмнө гаргавал. [1] хэлбэртэй болно. x1, x2 нь ax2+bx+c=0 тэгшитгэлийн шийд тул тэгшитгэлийн шийд бас болж чадна. Эндээс өмнөх тохиолдолын дагуу гурван гишүүнт гэж үржигдхүүнд задарна. Үүнийг [1] -д орлуулбал

гарна. Эндээс шийд бүхий ax2+bx+c хэлбэрийн гурван гишүүнт нь x2 -ийн коэффициент, аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр гурван үржигдхүүн болон задардаг байна.

Бодлого 2.058      
илэрхийллийг үржигдхүүнд задал

Бодолт

Бодлого 2.059
илэрхийллийг үржигдхүүнд задал

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2696 Бүртгүүлэх

Хувьсагч тригнометрийн функцэд агуулагдаж буй илэрхийллийг тригнометрийн илэрхийлэл гэдэг. Ийм төрлийн илэрхийллийг хувирган эмхэтгэл хийхэд тригнометрийн функцуудын чанар, тригнометрийн томьёонуудыг ашиглана. Тригнометрийн тэгшитгэл, тэнцэтгэл бишүүдийг бодохдоо эхлээд илэрхийлэлд хувиргалт хийн тэдгээрийг энгийн хэлбэрт шилжүүлэн боддог тул тригнометрийн илэрхийллийг хялбарчлах аргыг сайн эзэмшсэн байхад энэ сэдвийн бодлогуудыг онцын хүндрэлгүй шийднэ. Энэ хичээлээр тригнометрийн илэрхийллийг хувиргахад ашигладаг үндсэн томьёонуудыг хэрхэн хэрэглэхийг сурах болно.

  Нээгдсэн тоо: 6087 Нийтийн

Бөөрөнхий гадаргуу гэдэг нь огторгуйд байрлах O гэсэн нэг цэгээс ижил зайд орших цэгүүдийн олонлог / цэгийн геометр байрлал / юм. O цэгийг бөөрөнхий гадаргуун төв гэнэ. /Зур. 90/ AO радиус, AB диаметрийг тойрог дээрхтэй адилаар тодорхойлно.
Бөөрөнхий гадаргуугаар хязгаарлагдсан биетийг шаар /бөмбөлөг/ гэнэ. Шаарын бүх хавтгай зүсэлт нь дугуй байна. /Зур. 90/ Хамгийн том дугуй нь шаарын төвийг дайрсан зүсэлтээр үүсэх бөгөөд том дугуй гэж нэрлэнэ. Дурын хоёр том дугуй шаарын диаметрээр огтлолцоно. /Зур. 91/ Шаарын диаметрын төгсгөлд байрлах хоёр цэгийг дайруулан хязгааргүй олон том дугуй татаж болно.

  Нээгдсэн тоо: 10729 Бүртгүүлэх

Иррационал тоо -г рационал тоо шиг m/n /энд m , n - бүхэл тоонууд/ хэлбэрийн хураагдахгүй энгийн бутархай байдлаар илэрхийлж болдоггүй. Иррационал тоог дурын нарийвчлалтай тооцож болох боловч рационал тоогоор солих боломжгүй. Иррационал тоо нь геометрийн хэмжээсийн үр дүнд гарч ирж болно.

Жишээ

  • Квадратын диагналын урт, түүний талын уртын харьцаа -
  • Тойргийн уртыг диаметрт нь харьцуулсан харьцаа нь π / пи /тоотой тэнцүү  
  • Өөр иррационал тоонуудын жишээнүүд.

  Нээгдсэн тоо: 5107 Нийтийн

Модул ухагдхууныг сурагчид бүгд мэддэг ч түүнийг сайн ойлгосон нь маш цөөн байдаг. Асуудлын гол нь модул сэдвийн хичээлийг өнгөцхөн үздэг дээр нь бодит амьдралд модул оролцсон жишээнүүд цөөн тохиолддогтой холбоотой байж мэднэ. Иймээс модултай тэгшитгэлийг хэрхэн бодох талаар авч үзье. Модул гэхээр сурагчид их хүнд хэцүү зүйл гээд зайлсхийх гээд байдаг ч үнэн хэрэгтээ тийм ч хүнд ойлголт ердөө биш гэдгийг хичээлийг үзээд мэднэ. Материалыг хөнгөн, ойлгоход амар байлгах үүднээс таслан оруулна. Хүүхдүүд олон хуудас материалыг судлан ойлгох нь хүндрэлтэй байж болох талтай. Материалыг 30-40 минутын хичээлийн конспект байдлаар бэлтгэн хүргэх нь илүү үр дүнтэй гэж үзсэн хэрэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 167

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 243

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 205

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 318

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 349

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 354

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 435

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 448

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 511

 
Энэ долоо хоногт

функцийн уламжлалыг тооц.

Нээгдсэн тоо : 522

 

утгыг ол.

Нээгдсэн тоо : 313

 

prob04_103_01 ба prob04_103_02 векторууд перпендикуляр бол y -ийн утгыг ол.

Нээгдсэн тоо : 177