Бодлого бодож сурах нь IV

Илэрхийллийг үржигдхүүнд задлах 4 дэх аргад квадрат гурван гишүүнтийг задлах ордог тухай бид Бодлого бодож сурах нь I хичээлд дурдсан байгаа. Бид үржүүлэхийн хураангуй томьёог ашиглан үржигдхүүнд задлах хичээлийн эцэст x2-6x+8 илэрхийллийг бүлэглэх аргыг ашиглан үржигдхүүнд задалсан. Ийм төрлийн илэрхийллийг хэрхэн үржигдхүүнд задлах талаар энэ хичээлээр авч үзэх болно.

Квадрат гурван гишүүнтийг үржигдхүүнд задлах

Ямар нэгэн хувьсагчийн хоёрдугаар эрэмбийг агуулсан олон гишүүнтийг квадрат гурван гишүүнт гэдэг. Квадрат гурван гишүүнт

ax2+bx+c

ерөнхий хэрбэртэй байна. Энд a, b, c нь ямар нэгэн тодорхой тоонууд харин x нь янз бүрийн утгуудыг авч болно. x -ийн утгаас хамааран гурван гишүүнт төрөл бүрийн утгатай байх боломжтой гэдэг нь ойлгомжтой. Иймээс x-ийг олон гишүүнтийн аргумент гэж нэрлэдэг. Үүнийг жишээгээр x2-3x+2 олон гишүүнт дээр авч үзье. Олон гишүүнтийг y гэж тэмдэглэвэл y=x2-3x+2 гэж бичиж болно. Одоо x -д утгуудыг өгөхөд олон гишүүнтийн авч байгаа утгуудыг хүснэгтээр үзүүлбэл

x -1 0 1 2 3
y 6 2 0 0 2

Хүснэгтээс харвал x-ийн 1 ба 2 утганд олон гишүүнтийн утга тэг болсон. Эндээс доорх тодорхойлолт гарч ирнэ.

Гурван гишүүнтийн утгыг тэгтэй тэнцүүлэх аргументын утгуудыг түүний шийдүүд гэнэ.

Тодорхойлолтын дагуу бидний жишээгээр авсан гурван гишүүнтийн шийдүүд 1, 2 болж таарна. Эдгээр утгуудад олон гишүүнтийн утга тэгтэй тэнцүү болсон.
Квадрат гурван гишүүнтийг үржигдхүүнд задлах арга нь яг энэ шийдүүдийг ашигладаг. Олон гишүүнтийн шийдийг олохын тулд түүнийг тэгтэй тэнцүүлэн x -ийн утгыг хайна. Өөрөөр хэлбэл олон гишүүнтийг тэг утгатай байлгах аргументын утгыг олохын тулд ax2+bx+c=0 тэгшитгэлийг бодно гэсэн үг.Квадрат тэгшитгэлийг бодох аргаас түүний дискриминантаас хамааран тэгшитгэл хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болдог гэдгийг бид мэднэ. Энэ нь ч квадрат гурван гишүүнтэд бас хамаарагдана. Гурван гишүүнт бас хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болно. Иймээс тэгшитгэлийн дискриминантыг бас гурван гишүүнтийн дискриминант гэж нэрлэдэг.

Квадрат гурван гишүүнтийг задлах.

x2+px+q хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

y=x2+px+q гурван гишүүнт x1, x2 гэсэн шийдтэй гэж үзье. Тэгвэл x1, x2 нь x2+px+q=0 тэгшитгэлийн шийд болох ёстой. Нөгөө талаас Виетийн теоремоор x1+x2=-p; x1·x2=q байна. Эндээс -(x1+x2)=p; x1·x2=q болох бөгөөд утгуудыг гурван гишүүнд тавин хувиргалтыг хийвэл

гарна. Ингээд x2+px+q хэлбэрийн гурван гишүүнт гэж үржигдхүүнд задарлаа. Эндээс x2+px+q хэлбэрийн гурван гишүүнт шийдүүдтэй бол олон гишүүнт аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр үржигдхүүнд задарна гэсэн тодорхойлолтонд хүрлээ.

Жишээ
Бодлого бодож сурах нь III хичээлийн төгсгөлд үзсэн x2-6x+8 илэрхийллийг авч үзье.

Бодолт
Илэрхийллийг бид бүлэглэх аргаар үржигдхүүнд задалж байсан. Одоо илэрхийллийн дээрх аргаар үржигдхүүнд задлая. Гурван гишүүнтийн шийдийг олохын тулд x2-6x+8=0 тэгшитгэлийг бодох хэрэгтэй. Тэгшитгэлийг бодвол x1=2; x2=4 гэсэн шийдүүд олдоно. Тэгвэл өгөгдсөн илэрхийлэл x2-6x+8=(x-2)(x-4) байдлаар үржигдхүүнд задарна.

ax2+bx+c хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

Гурван гишүүнтийг y=ax2+bx+c гэж бичээд a≠0 , x1, x2 гэсэн шийдтэй гэж үзье. Гурван гишүүнтээс a -г хаалтны өмнө гаргавал. [1] хэлбэртэй болно. x1, x2 нь ax2+bx+c=0 тэгшитгэлийн шийд тул тэгшитгэлийн шийд бас болж чадна. Эндээс өмнөх тохиолдолын дагуу гурван гишүүнт гэж үржигдхүүнд задарна. Үүнийг [1] -д орлуулбал

гарна. Эндээс шийд бүхий ax2+bx+c хэлбэрийн гурван гишүүнт нь x2 -ийн коэффициент, аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр гурван үржигдхүүн болон задардаг байна.

Бодлого 2.058      
илэрхийллийг үржигдхүүнд задал

Бодолт

Бодлого 2.059
илэрхийллийг үржигдхүүнд задал

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2375 Нийтийн

Бүхэл тоо гэдэг нь бутархай хэсэггүй эерэг ба сөрөг тоонууд болон тэг тоо юм. 0 нь эерэг ч биш сөрөг ч биш бүхэл тоо. Иймээс тэгийн өмнө ямар нэгэн тэмдэг тавих нь утга илэрхийлэхгүй +0, -0 бичлэг 0 бичлэгтэй ижил.  

Эерэг ба сөрөг тоонууд

Тоолол нь хоёр эсрэг чиглэлд хийгддэг хэмжээсүүд байдаг. Жишээ нь дулааны хэм буюу температурийн тооллыг хоёр эсрэг чиглэлд хийдэг.

  Нээгдсэн тоо: 2982 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

  Нээгдсэн тоо: 15938 Төлбөртэй

Алгебрийн шугаман тэгшитгэлүүдийн системийг (АШТС) бодоход Гауссын арга их тохиромжтой. Энэ арга бусад аргуудтай харьцуулахад хэдэн давуу талтай.

  1. Тэгшитгэлийн системийг зохицож байгаа  эсэхийг урьдчилан шалгах шаардлагагүй
  2. Гауссын аргаар тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирсон системийг бодож болохын дээр тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирохгүй эсхүл үндсэн матрицийн тодорхойлогч тэгтэй тэнцүү системийг ч бодож болдог
  3. Гауссын арга харьцангуй бага тооцоогоор үр дүнд хүрдэг.

Үндсэн тодорхойлолт ба тэмдэглэгээнүүд

n үл мэдэгдэгчтэй p шугаман тэгшитгэлийн системийг авч үзье. (p болон n тэнцүү байж болно.)

  Нээгдсэн тоо: 8983 Төлбөртэй

Гурван талтай / эсвэл гурван өнцөгтэй / олон өнцөгтийг гурвалжин гэнэ. Гурвалжингийн талуудыг голдуу жижиг үсгээр , талын эсрэг орших оройг том үсгээр тэмдэглэдэг.

Гурвалжингийн бүх гурван өнцөг нь /Зур. 20/ хурц байвал хурц өнцөгт , аль нэг өнцөг нь /Зур. 21/ тэгш байвал тэгш өнцөгт гурвалжин гэж нэрлэнэ. Тэгш өнцөгт гурвалжны тэгш өнцгийг үүсгэж байгаа a, b талуудыг катетууд, харин тэгш өнцгийн эсрэг орших талыг гипотенуз гэдэг. Гурвалжингийн аль нэг өнцөг нь /Зур. 22/ мохоо байвал мохоо өнцөгт гурвалжин гэнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 140

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 204

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 170

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 293

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 321

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 326

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 400

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 401

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 473

 
Энэ долоо хоногт

KLM суурьтай, KL=1, KK1=d талтай KLL1K1 тэгш өнцөгт хажуу бүхий KLMK1L1M1 призм өгөгджээ. KL_|_KM, LMM1 , KMM1 хавтгайнуудын хоорондын өнцөг 60°, бол утганд призмд түүний бүх талыг шүргэх шаарыг багтааж болно.

Нээгдсэн тоо : 1813

 

тоонд хуваахад гарах тооны аравтын бичлэгт "0" цифр хэдэн удаа орох вэ?

Нээгдсэн тоо : 1513

 

Нээгдсэн тоо : 1496