Бодлого бодож сурах нь IV

Илэрхийллийг үржигдхүүнд задлах 4 дэх аргад квадрат гурван гишүүнтийг задлах ордог тухай бид Бодлого бодож сурах нь I хичээлд дурдсан байгаа. Бид үржүүлэхийн хураангуй томьёог ашиглан үржигдхүүнд задлах хичээлийн эцэст x2-6x+8 илэрхийллийг бүлэглэх аргыг ашиглан үржигдхүүнд задалсан. Ийм төрлийн илэрхийллийг хэрхэн үржигдхүүнд задлах талаар энэ хичээлээр авч үзэх болно.

Квадрат гурван гишүүнтийг үржигдхүүнд задлах

Ямар нэгэн хувьсагчийн хоёрдугаар эрэмбийг агуулсан олон гишүүнтийг квадрат гурван гишүүнт гэдэг. Квадрат гурван гишүүнт

ax2+bx+c

ерөнхий хэрбэртэй байна. Энд a, b, c нь ямар нэгэн тодорхой тоонууд харин x нь янз бүрийн утгуудыг авч болно. x -ийн утгаас хамааран гурван гишүүнт төрөл бүрийн утгатай байх боломжтой гэдэг нь ойлгомжтой. Иймээс x-ийг олон гишүүнтийн аргумент гэж нэрлэдэг. Үүнийг жишээгээр x2-3x+2 олон гишүүнт дээр авч үзье. Олон гишүүнтийг y гэж тэмдэглэвэл y=x2-3x+2 гэж бичиж болно. Одоо x -д утгуудыг өгөхөд олон гишүүнтийн авч байгаа утгуудыг хүснэгтээр үзүүлбэл

x -1 0 1 2 3
y 6 2 0 0 2

Хүснэгтээс харвал x-ийн 1 ба 2 утганд олон гишүүнтийн утга тэг болсон. Эндээс доорх тодорхойлолт гарч ирнэ.

Гурван гишүүнтийн утгыг тэгтэй тэнцүүлэх аргументын утгуудыг түүний шийдүүд гэнэ.

Тодорхойлолтын дагуу бидний жишээгээр авсан гурван гишүүнтийн шийдүүд 1, 2 болж таарна. Эдгээр утгуудад олон гишүүнтийн утга тэгтэй тэнцүү болсон.
Квадрат гурван гишүүнтийг үржигдхүүнд задлах арга нь яг энэ шийдүүдийг ашигладаг. Олон гишүүнтийн шийдийг олохын тулд түүнийг тэгтэй тэнцүүлэн x -ийн утгыг хайна. Өөрөөр хэлбэл олон гишүүнтийг тэг утгатай байлгах аргументын утгыг олохын тулд ax2+bx+c=0 тэгшитгэлийг бодно гэсэн үг.Квадрат тэгшитгэлийг бодох аргаас түүний дискриминантаас хамааран тэгшитгэл хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болдог гэдгийг бид мэднэ. Энэ нь ч квадрат гурван гишүүнтэд бас хамаарагдана. Гурван гишүүнт бас хоёр өөр эсхүл хоёр ижил эсхүл шийдгүй байж болно. Иймээс тэгшитгэлийн дискриминантыг бас гурван гишүүнтийн дискриминант гэж нэрлэдэг.

Квадрат гурван гишүүнтийг задлах.

x2+px+q хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

y=x2+px+q гурван гишүүнт x1, x2 гэсэн шийдтэй гэж үзье. Тэгвэл x1, x2 нь x2+px+q=0 тэгшитгэлийн шийд болох ёстой. Нөгөө талаас Виетийн теоремоор x1+x2=-p; x1·x2=q байна. Эндээс -(x1+x2)=p; x1·x2=q болох бөгөөд утгуудыг гурван гишүүнд тавин хувиргалтыг хийвэл

гарна. Ингээд x2+px+q хэлбэрийн гурван гишүүнт гэж үржигдхүүнд задарлаа. Эндээс x2+px+q хэлбэрийн гурван гишүүнт шийдүүдтэй бол олон гишүүнт аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр үржигдхүүнд задарна гэсэн тодорхойлолтонд хүрлээ.

Жишээ
Бодлого бодож сурах нь III хичээлийн төгсгөлд үзсэн x2-6x+8 илэрхийллийг авч үзье.

Бодолт
Илэрхийллийг бид бүлэглэх аргаар үржигдхүүнд задалж байсан. Одоо илэрхийллийн дээрх аргаар үржигдхүүнд задлая. Гурван гишүүнтийн шийдийг олохын тулд x2-6x+8=0 тэгшитгэлийг бодох хэрэгтэй. Тэгшитгэлийг бодвол x1=2; x2=4 гэсэн шийдүүд олдоно. Тэгвэл өгөгдсөн илэрхийлэл x2-6x+8=(x-2)(x-4) байдлаар үржигдхүүнд задарна.

ax2+bx+c хэлбэрийн гурван гишүүнтийг үржигдхүүнд задлах.

Гурван гишүүнтийг y=ax2+bx+c гэж бичээд a≠0 , x1, x2 гэсэн шийдтэй гэж үзье. Гурван гишүүнтээс a -г хаалтны өмнө гаргавал. [1] хэлбэртэй болно. x1, x2 нь ax2+bx+c=0 тэгшитгэлийн шийд тул тэгшитгэлийн шийд бас болж чадна. Эндээс өмнөх тохиолдолын дагуу гурван гишүүнт гэж үржигдхүүнд задарна. Үүнийг [1] -д орлуулбал

гарна. Эндээс шийд бүхий ax2+bx+c хэлбэрийн гурван гишүүнт нь x2 -ийн коэффициент, аргумент болон шийдүүдийн ялгаваруудын үржвэр хэлбэрээр гурван үржигдхүүн болон задардаг байна.

Бодлого 2.058      
илэрхийллийг үржигдхүүнд задал

Бодолт

Бодлого 2.059
илэрхийллийг үржигдхүүнд задал

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 16711 Нийтийн

Энэ хичээлээр логарифм тэгшитгэлүүдийг бодох аргуудын талаар авч үзнэ. Хувьсагч утга нь логарифмын тэмдэгт байрлах тэгшитгэлийг логарифм тэгшитгэл гэдэг. Жишээ нь
Логарифмын үндсэн адитгал, чанаруудын талаар Логарифм хичээлээс үзээрэй. Үүнээс гадна логарифм тэгшитгэлүүдийг бодож сурахад Үндсэн томьёонуудыг мэддэг байх хэрэгтэй. Логарифм тэгшитгэлийг бодох үндсэн дүрэм бол

  Нээгдсэн тоо: 2523 Бүртгүүлэх

Хувьсах хэмжигдхүүн нь туршилтын үр дүнд тодорхой магадлалтайгаар бодит утга авч байвал түүнийг санамсаргүй гэж нэрлэнэ. Хэрвээ сөрөг биш X хувьсагчийг pi магадлалтайгаар xi утгыг авах харгалзааг тодорхойлох

функц байвал X санамсаргүй хэмжигдхүүнийг дискрет гэдэг.

  Нээгдсэн тоо: 5020 Бүртгүүлэх

Натурал тоо гэдэг нь ямар нэгэн зүйлийн тооллого эсхүл дугаарлалтад ашиглагдах тоонууд.
Тасралтгүйгээр өсөх дарааллаар бичигдсэн натурал тоонууд натурал тооны цуваа буюу хураангуйгаар натурал цувааг үүсгэдэг. Жишээ нь

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... бол натурал цуваа.

  Нээгдсэн тоо: 16955 Нийтийн

Хязгаарыг бодох аргууд сэдвээр дахин нэг хичээлийг танилцуулж байна. Энд бид хязгаарыг бодоход гайхамшигт хязгаарыг хэрхэн ашиглах талаар авч үзэх юм. Гайхамшигт хязгаар цөөн тооны байдаг ч оюутан сурагчдад ихэнхдээ нэг ба хоёрдугаар гайхамшигт хязгаарыг ашигладаг. ЕБС-ын хэмжээнд гайхамшигт хязгаарын талаар дэлгэрэнгүй үзээд байдаггүй ч эдгээрийг мэдэж байх нь зарим төрлийн бодлогыг бодолтонд маш хэрэгтэй болдог. Хичээлийг материалыг судлахаасаа өмнө Хязгаарыг ойлгох нь, Хязгаарыг бодох аргууд хичээлүүдийг үзэж судалсан байхыг сануулъя.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 36

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 40

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 57

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 177

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 226

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 232

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 264

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 257

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 341

 
Энэ долоо хоногт

олон гишүүнтийг үржигдхүүн болгон задал.

Нээгдсэн тоо : 819

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 930

 

Тоног төхөөрөмжийн сайжруулалтын үр дүнд ажилчны хөдөлмөрийн бүтээмж жилд хоёр удаа нэг ижил хувиар дээшилжээ. Хэрвээ ажилчин нэг ижил хугацаанд өмнө нь 2500 х.н харин одоо 2809 х.н бутээгдхүүн хийдэг болсон бол хөдөлмөрийн бүтээмж өсөх бүрдээ хэдэн хувиар өссөн бэ?

Нээгдсэн тоо : 385