Виетийн тонгоруу теорем.

Олон бодлого бодоод байвал математикт сайжирна гэсэн яриа хүмүүсийн дунд өргөн тархсан байдаг. Бодлого ихээр бодох нь техник талаасаа сайн нөлөөтэй болохоос математикийг ойлгодог болгоно гэдэг эргэлзээтэй. Онолын мэдлэгтэй байх нь ямарч хичээлийн хувьд үндсэн асуудал. Онолгүйгээр хол явахгүй гэж ярьдаг үүнийг хэлж байгаа юм. Энэ удаад Виетийн теоремийн тухай үргэлжлүүлэн авч үзье. Теорем гэдэг нь баталгаа шаардлагатай тодорхойлолт буюу нотолгоо. Өмнөх Виетийн теорем хичээлд жишээ болгон авч үзсэн гурван тэгшитгэлд теорем ажиллаж байгаа ч ямарч тэгшитгэлд адилхан ажиллана гэдгийг батлах хэрэгтэй. Теоремийг нээн олсон математикчид өөрсдөө батлаад түүнийг нь бусад нь хүлээн зөвшөөрсөн учраас математикт теоремоор бүртгэсэн хэрэг. Өнөөг хүртэл жишээ нь Фермагийн их теорем гэдэг нотолгоо батлагдаагүй, олон тооны интегралууд бодогдоогүй байсаар л байгаа. Хүн өөрийн дэвшүүлсэн санаа, нотолгоог баталснаар тэр нь теорем болно.

Теорем болгоны баталгааг заавал мэдэх албагүй ч сонирхолтой байх үүднээс Виетийн теоремийн баталгааг харцгаая. x2 + bx + c = 0 бүрэн квадрат тэгшитгэл өгөгдсөн гэе. Хэрвээ түүний дискриминант тэгээс их бол тэгшитгэл хоёр шийдтэй байх бөгөөд тэдгээрийн нийлбэр тэгшитгэлийн 1 -р эрэмбийн үл мэдэгдэгчийн коэффициентийг сөрөг тэмдэгтэй авсантай харин үржвэр нь тэгшитгэлийн сул гишүүнтэй тэнцүү. Математикийн бичлэгээр x2 + bx + c = 0 бүрэн квадрат тэгшитгэлийн шийдийг x1, x2 гэвэл

тэнцлүүдийн систем биелнэ. Дээрх тэнцэл зөв эсэхийг батлая. Квадрат тэгшитгэлийн шийдийг олох

томьёоны дагуу тэгшитгэл шийдүүдтэй. x1+x2 нийлбэрийг олъё. x2+bx+c=0 бүрэн квадрат тэгшитгэлийн хувьд 2 -р эрэмбийн үл мэдэгдэгчийн коэффициент 1 гэдгийг сануулъя. Өөр хэлбэл a=1 гэсэн үг. Нийлбэрийг олбол гэж гарснаар x1+x2=-b гэдэг нь батлагдлаа. Одоо шийдүүдийг хооронд нь үржүүлбэл

болно. Хүртвэрт квадратуудын ялгаварын томьёог хэрэглэвэл болно. Квадрат тэгшитгэлийн шийдийг олох томьёоноос дискриминант b2-4ac -тэй тэнцүү гэдгийг мэдэх тул түүнийг сүүлийн бутархайд тавивал гэж гарснаар системийн 2 -р тэнцэл биелснээр теорем батлагдлаа.

Виетийн теоремийн тонгоруу теорем.

Теоремийн нэрийг жаахан буруу нэрлэсэн байж магадгүй. Бүрэн квадрат тэгшитгэлийн шийдүүдийн нийлбэр, үржвэрийн тэнцлийн системийг гаргасны дараа тэгшитгэлд тохирох шийдүүдийн сонголтыг хийх болдог. Энэ үед л Виетийн теоремийн тонгоруу теоремийг ашигладаг. Теоремийг тодорхойлбол:

Хэрвээ x1, x2 тоонуудын нийлбэр x2+bx+c=0 бүрэн квадрат тэгшитгэлийн 1 -р эрэмбийн үл мэдэгдэгчийн коэффициентийг сөрөг тэмдэгтэй авсантай харин үржвэр нь тэгшитгэлийн сул гишүүнтэй тэнцүү бол x1, x2 тоонууд x2+bx+c=0 тэгшитгэлийн шийд болно.

Теоремийг x2-6x+8=0 тэгшитгэл дээр авч үзье. Тэгшитгэлд Виетийн теоремийг бичвэл систем үүснэ. Одоо системийг хангах тоонуудыг олчихвол тэдгээр нь Виетийн теоремийн тонгоруу теоремоор анхдагч тэгшитгэлийн шийд болох ёстой. Тэгшитгэлийн шийдүүдийг үржвэрээс сонгох нь илүү амар байдаг тул хоёрдахь тэнцлийг хангах тоонуудыг сонгоё. тэнцлийг 1·8=8, 2·4=8 гэдгээс 1; 8; 2; 4 тоонууд хангана. Гэхдээ эдгээр тоонууд 1 -р тэнцлийг хангасан тохиолдолд тэгшитгэлийн шийд болох ёстой учраас шалгах хэрэгтэй. 1+8≠6; 2+4=6 гэдгээс 2 болон 4 тоонууд тэгшитгэлийн шийд гэдэг нь харагдана. Эндээс x1=2; x2=4 гэж гарна.

Тонгоруу теоремд бусад теоремуудын адилаар баталгаа шаардана. Теоремийг батлая. Тооцоонд эвтэйхэн байлгах үүднээс тоонуудыг m, n гэж үзье. Теорем ёсоор m, n тоонууд системийг хангаж байвал x2+bx+c=0 тэгшитгэлийн шийдүүд байх ёстой. m, n -ээр тэгшитгэлийн b, c коэффициентүүд илэрхийлэгдэж байгаа учраас  m, n нь тэгшитгэлийн шийд мөн эсэхийг шалгахын тулд тэдгээрийг тэгшитгэлд тавин тооцоог хийе. Системийн эхний тэнцэл b коэффициентийг сөрөг тэмдэгтэй авсанг b=-m-n болговол тооцоонд ойлгомжтой. Ингээд x1=m гэж үзээд түүнийг тэгшитгэлд тавин тооцвол болсноор m тэгшитгэлийн шийд гэдэг нь батлагдана. x2=n гэж үзээд өмнөхийн адилаар тэгшитгэлд тавин тооцвол (тооцоог танд үлдээе) m, n нь тэгшитгэлийн шийдүүд гэдэг нь батлагдсанаар теорем батлагдана. Теоремийг ашиглахыг жишээгээр харцгаая.

Жишээ

x2+16x+15=0 тэгшитгэлийг бод.

Бодолт

Тэгшитгэлийн шийдүүдийг x1, x2 гэе. Тэгвэл Виетийн тонгоруу теоремоор систем биелэх ёстой. Хоёр тооны үржвэр эерэг гарахын тулд нэг бол тоонууд хоёулаа эерэг эсхүл хоёулаа сөрөг байх ёстой. Эдгээр тоонуудын нийлбэр -16 гэдгээс тоонууд эерэг байх боломжгүй хоёулаа сөрөг байх ёстой нь гарна. 15 -ыг -1, -15 эсхүл -3, -5 тоонуудын үржвэрээр гаргаж болно. Эдгээрээс -1, -15 тоонууд системийн 1 -р тэгшитгэлийг хангах учраас Виетийн тонгоруу теоремоор -1, -15 тоонууд өгөгдсөн тэгшитгэлийн шийд болно.

Жишээ

x2-10x-39=0 тэгшитгэлийг Виетийн тонгоруу теоремоор бод.

Бодолт
Виетийн тонгоруу теоремоор нийлбэр, үржвэрүүд нь системийг хангах x1, x2 тоонууд тэгшитгэлийн шийд байх ёстой. Үржвэр сөрөг байна гэдэг нь аль нэг тоо нь сөрөг гэдгийг заана. -39 тоо 13, -3 эсхүл -13, 3 тоонуудын үржвэрээр гарах бөгөөд тэдгээрийн нийлбэр 10 тай тэнцэх нөхцлийг 13, -3 тоонууд хангана. Иймээс Виетийн тонгоруу теоремоор өгөгдсөн тэгшитгэлийн шийдүүд x1=13, x2=-3 гэж гарна.

Жишээ

x2+bx+45=0 тэгшитгэлийн эхний шийд 15 бол хоёрдахь шийд болон b коэффициетийг ол.

Бодолт

Виетийн теоремоор эмхэтгэсэн квадрат тэгшитгэлийн шийдүүдийн үржвэр x1·x2=45 сул гишүүнтэй тэнцүү гэдгээс 15·x2=45 тэгшитгэл үүсэн эндээс x2=3 гэж гарна. Нөгөө талаас x1+x2=-b тэй тэнцүү байх ёстой. Шийдүүдийг тэгшитгэлд тавин тооцвол 15+3=-b буюу b=-18 гэж гарна.

Бүрэн буюу эмхэтгээгүй квадрат тэгшитгэлийн Виетийн теорем

Виетийн теорем зөвхөн эмхэтгэсэн квадрат тэгшитгэлд ажилладаг гэж ойлгож болохгүй. Жишээ нь ax2+bx+c=0 бүрэн квадрат тэгшитгэл байлаа гэе. Виетийн теоремийг тэгшитгэлд хэрэглэхийн тулд квадрат зэрэгтэй үл мэдэгдэгчийн коэффициентод тэгшитгэлийн хоёр талыг хуваавал эмхэтгэсэн квадрат тэгшитгэл үүснэ. Одоо тэгшитгэлийн 1 -р эрэмбийн үл мэдэгдэгчийн коэффициент b/a харин сул гишүүн c/a болсон. Тэгшитгэлд Виетийн теоремийг бичвэл хэлбэртэй болно.

Жишээ

3x2-7x+2=0 тэгшитгэлийг бод.;

Бодолт

Эхлээд тэгшитгэлийг эмхэтгэсэн хэлбэрт оруулъя. Үүний тулд квадрат зэрэгтэй үл мэдэгдэгчийн коэффициентод тэгшитгэлийн хоёр талыг хуваавал тэгшитгэл үүсэх бөгөөд Виетийн теоремийг бичвэл систем үүснэ. Сонгох аргаар системийг 2, 1/3 тоонууд хангана гэдгийг тодорхойлон тэгшитгэлийг бодно.

Жич: Квадрат тэгшитгэлийн шийдийг стандарт томьёонуудаар олох нь амар байдаг тул Виетийн теоремийг тийм өргөн ашиглаад байдаггүй. Гэхдээ зарим бодлогод Виетийн теорем хэрэг болох үе бий.

Жишээ
нь тэгшитгэлийн шийдүүд бол -ийг ол.

Бодолт

Бодлогыг стандарт аргаар шийдэх гэвэл нилээд их тооцоо хийх хэрэг гарна. Үүний оронд тэгшитгэлд Виетийн теорем бичвэл систем биелэх ёстой. Теоремийг ашиглахын тулд илэрхийлэлд багахан хувиргалт хийгээд хэлбэрт оруулбал теорем ёсоор байх ёстой. Тэгвэл гэдэг нь амархан харагдана. Бодлогыг стандарт аргаар өөрсдөө шийдээрэй.

Виетийн теоремийг мэдэхгүй бол та хичнээнч квадрат тэгшитгэл бодсон байлаа ч сүүлийн бодлогод ийм техникийг ашиглаж чадахгүй стандарт аргаар л шийдэхэд хүрнэ. Иймээс л математикийг ойлгохын тулд онолыг сайтар судлахыг зөвлөөд байгаа хэрэг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6088 Төлбөртэй

Логарифм бол ЕБ сургуулийн математикийн хичээлийн хүндхэн сэдэвт ордог. Гэхдээ ерөнхий ойлголтыг зөв авсан байхад сэдэв нь тийм хүнд биш гэдгийг та энэхүү хичээлийг үзээд мэдрэх болно. Гол зүйл бол логарифмын үндсэн тодорхойлолт, түүнийг хэрхэн тооцоход л байгаа юм. Үүнийг сайн ойлгосон байхад цаашид логарифм илэрхийлэл, тэгшитгэл, тэнцэтгэл бишүүдийг бодоход онцын хүндрэл гарах ёсгүй. Логарифмын бодлогуудыг математикийн бүхий л илэрхийлэл, тэгшитгэл, тэнцэтгэл бишүүдийг боддог ерөнхий аргачлалын дагуу тэдгээрийг эхлээд хялбарчлан энгийн хэлбэрт оруулаад эцэст нь үндсэн тодорхойлолтыг ашиглан боддог. За ингээд логарифм гэж юу болохыг ойлгоцгооё.

  Нээгдсэн тоо: 44579 Бүртгүүлэх

Хувь гэдэг нь нэгийг 100 хуваасны 1 хэсэг. 1%=0.01 Хувиар бодогдох бодлогыг үндсэнд нь 3 тєрєлд хувааж болно.

1. Өгөгдсөн тооноос хувийг олох. Өгөгдсөн тоог хувиар үржүүлээд гарсан үржвэрийг 100 д хуваана.

Жишээ Банкны хадгаламжийн хүү жилийн 6%. 10000 тєгрєгийн хадгалмж жилдээ хэдэн төгрөгөөр өсөх вэ?
Бодолт 10000 · 6 : 100 =600 төгрөг

2. Өгөгдсөн тоо нь олох тоонд эзлэх хувиар тоог олох. Өгөгдсөн тоог түүний хувийн хэмжээнд хуваагаад 100 гаар үржүүлнэ.

Жишээ Ажилчин нэгдүгээр сард 300 мян.төг цалин авсан нь жилийн цалингийн 7.5% байсан бол жилийн цалин нь хэд вэ?
Бодолт 300000 : 7.5 · 100 =4000000 төгрөг

3. Хоёр тооны нэг нь нөгөөдөө эзлэх хувийг олох. Нэгдүгээр тоогоо хоёрдугаар тоондоо хуваагаад 100 гаар үржүүлнэ.

Жишээ Үйлдвэр эхний жилд 40000, дараагийн жилд 36000 машин үйлдвэрлэжээ.Эхний жилийн хэдэн хувийг дараагийн жилд хийсэн бэ?
Бодолт 36000 : 40000 · 100 =90%

  Нээгдсэн тоо: 2343 Бүртгүүлэх

Ямар нэгэн муруй хавтгай дээр /Зур. 94/ A, B, C гэсэн гурван цэг байна гэж үзээд эдгээр цэгүүдийг дайруулан P огтлогч хавтгайг татъя. B, C цэгүүдийг A цэг рүү хоёр өөр чиглэлээр хөдөлгөе. Тэгвэл P хавтгай нь B, C цэгийг хаана авсан, A цэг рүү явж байгаа замаас хамаарахгүйгээр ямар нэгэн Q хязгаарын байрлал руу тэмүүлэх болно. Q хавтгайг A цэг дэх шүргэгч хавтгай гэнэ.
Гадаргуун зарим цэгүүд шүргэгч хавтгайгүй байж болно. Жишээ нь: Конусын оройд шүргэгч хавтгай байхгүй.

Бөөрөнхий гадаргуун шүргэгч P хавтгай нь /Зур. 95/ шүргэлтийн цэг A -д татсан OA радиустай перпендикуляр байна. Бөөрөнхий гадаргуу ба шүргэгч хавтгай нь шүргэлтийн цэг гэсэн ганцхан ерөнхий цэгтэй байдаг.

  Нээгдсэн тоо: 1618 Төлбөртэй

Вектортой холбоотой бодлого сурагчдад нилээд хүндрэл учруулдаг. Учир нь тухайн сэдвийг дунд сургуульд маш өнгөцхөн байдлаар үзээд өнгөрдөгтэй холбоотой байх. Ойлголтыг дээд математикт гүнзгийрүүлэн үздэг ч ерөнхий ойлголтыг сайн ойлгосон байж л бодлого бодоход ашиглана. Иймээс энэ хичээлд векторын төрлүүдийн талаар авч үзье.

Цэсийг нээх хаах ажиллагааг хариуцах компонентийг боловсруулсан тул энэ хичээлээр програмийн удирдах цэсийг…

Нээгдсэн тоо : 3

 

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 16

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549