Алгебрын тэгшитгэлийг бодох аргууд

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

2. Квадрат тэгшитгэл

n=2 байхад дээрх бичлэг ax2+bx+c=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг квадрат тэгшитгэл гэх бөгөөд томьёогоор эсвэл Виетийн теоремоор бодогдоно. Дэлгэрэнгүй мэдээллийг Квадрат тэгшитгэлийг бодох хичээлээс үзээрэй.

3. Рационал бутархай төрлийн тэгшитгэл.

Ийм тэгшитгэлийг доорх схемээр бодно.

  • Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргана.
  • Тэгшитгэлийн зүүн талын бүх гишүүдийг ерөнхий хуваарьт оруулна. Өөрөөр хэлбэл тэгшитгэлийг хэлбэрт оруулна.
  • f2(x)≠0 үед f1(x)=0 тэгшитгэлийг бодно.

Бодлого 3.046
тэгшитгэлийг бод.

Бодолт

Рационал бутархай хэлбэрийн тэгшитгэлийг бодохдоо хуваарийг тэгтэй тэнцүүлэх үл мэдэгдэгчийн утгыг заавал тооцож тэдгээрийг тэгшитгэлийн шийдээс хасах хэрэгтэйг санаарай.

4. Бүлэглэх арга.

Тэгшитгэлийн гишүүдийг бүлэглэн илэрхийллийг эмхэтгэх аргуудыг ашиглан боломжтой бол тэгшитгэлийн зүүн хэсгийг үржигдхүүнүүдийн үржвэр хэлбэрт оруулаад баруун хэсэгт тэг үлдээнэ. Дараа нь үржигдхүүн бүрийг тэгтэй тэнцүүлэн бодож шийдийг олох арга.

Бодлого 3.047
тэгшитгэлийг бод.

Бодолт

Алгебрийн тэгшитгэлийг бодоход илэрхийллийг үржигдхүүнд задлах аргуудыг ихээр ашигладагийг дээрх жишээ баталж байна.

5. Орлуулах арга

Тэгшитгэлд давтагдаж байгаа илэрхийллийг шинэ үл мэдэгдэгчээр орлуулаад тэгшитгэлийг энгийн хэлбэрт шилжүүлэн бодоод гарсан шийдийг орлуулгад буцаан тавих замаар анхдагч тэгшитгэлийн шийдийг олох универсал арга. Аргыг алгебрийн гэлтгүй өөр бусад төрлийн тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг.

Бодлого 3.048
тэгшитгэлийн шийдүүд бол a, b, c, d -г ол.

Бодолт

Арай хүндхэн тохиолдолд тэгшитгэлд эхмэтгэл хийсний дараа орлуулга харагдаж болно. Жишээ нь

Бодлого 3.049
тэгшитгэлийг бод.

Бодолт

6. Сонгох арга.

Дээд эрэмбийн тэгшитгэлүүдийг бодохдоо p/q хэлбэрийн шийдийг хайх хэрэгтэй. Энд p - a0 -ийн хуваагч, q - an -ийн хуваагч байх анхны тоонууд байна. Арга нь илэрхийллийг үржигдхүүнд задлах олон гишүүнтийг хоёр гишүүнтэд хуваах аргатай нягт холбоотой байдаг тул холбогдох хичээлийг үзнэ үү.

Бодлого 3.050
тэгшитгэлийг бод.

Бодолт

7. Модул агуулсан тэгшитгэлийг бодох.

Модул агуулсан тэгшитгэлийг бодохдоо модулийн тодорхойлолт болон интервалын аргыг ашиглана. Аргын ерөнхий схем нь

  • Тэгшитгэлийн модулд байгаа илэрхийллүүдийг тэгтэй тэнцүүлэн утгыг олно.
  • Олдсон утгуудыг тоон тэнхлэгт тэмдэглэнэ.
  • Тоон тэнхлэгийн хуваагдсан интервал бүрд тэгшитгэлийн шийдийг тооцно.

Бодлого 3.051
тэгшитгэлийг бод.

Бодолт

Зарим тохиолдолд модулийн чанарыг ашиглан модулаас салж болно.

Бодлого 3.052
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2792 Бүртгүүлэх

Геометрийн ухагдхуунууд практикт ойр боловч сурагчид геометрийн бодлогын нөхцлийг ойлгон зураг гаргаж чадахгүй байх нь элбэг. Энэ нь бодлогын нөхцөлд өгөгдсөн ухагдхууныг зөв ойлгон аваагүйтэй шууд холбоотой асуудал. Иймээс сайтад хавтгайн геометрийн сэдвээр хичээлүүдийг бэлтгэн оруулах санаа төрлөө.

Цэг, шулуун, хэрчим, муруй, өнцөг, хугарсан шугам, тойрог, гурвалжин гэх мэтээр олон төрлийн геометрийн хавтгай дүрсүүд бий.

Дээрх зурагт үзүүлсэн дүрсүүдийг сайн ажиглавал эдгээрээс битүү шугамаар үүссэн тойрог, гурвалжин хоёрыг онцолж болохоор.

  Нээгдсэн тоо: 14165 Бүртгүүлэх

Бид өмнө нь хязгаар гэж юу болох энгийн хязгааруудыг хэрхэн бодох талаар авч үзсэн. Хязгаарыг ойлгох нь хичээлд үзсэн жишээнүүд их энгийн байсан бөгөөд ийм бэлэгүүд практикт ховор тохиолдох тухай дурдсан. Тэгэхлээр энэ хичээлд хязгаарын илүү нарийн төрлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе.

∞/∞ хэлбэрийн тодорхойгүй төрлийн хязгаарыг бодох.

x->∞ байх үед функц нь хүртвэр, хуваардаа олон гишүүнтийг агуулсан хязгааруудыг авч үзье.

Жишээ 1.

хязгаарыг тооцоол.

  Нээгдсэн тоо: 205 Бүртгүүлэх

Тоонуудын нэмэх үйлдэлд өргөнөөр ашигладаг дүрэм буюу хууль байдаг. Эдгээр нь тоонуудын нийлбэрийг хялбараар хурдан тооцоход их тустай. Нэмэх үйлдэлд байр сэлгэх, нэгтгэн /бүлэглэн/ нэмэх гэсэн хоёр дүрэм бий.

Байр сэлгэн нэмэх дүрэм

Нийлбэрт оролцож буй тоонуудын байрыг солиход нийлбэр өөрчлөгдөхгүй. 

Үүнийг доорх зураг дээрх

arif03_01_01

таван хошуунуудын нийт тоог тооцон амархан шалгах боломжтой.

  Нээгдсэн тоо: 8648 Төлбөртэй

Гурван талтай / эсвэл гурван өнцөгтэй / олон өнцөгтийг гурвалжин гэнэ. Гурвалжингийн талуудыг голдуу жижиг үсгээр , талын эсрэг орших оройг том үсгээр тэмдэглэдэг.

Гурвалжингийн бүх гурван өнцөг нь /Зур. 20/ хурц байвал хурц өнцөгт , аль нэг өнцөг нь /Зур. 21/ тэгш байвал тэгш өнцөгт гурвалжин гэж нэрлэнэ. Тэгш өнцөгт гурвалжны тэгш өнцгийг үүсгэж байгаа a, b талуудыг катетууд, харин тэгш өнцгийн эсрэг орших талыг гипотенуз гэдэг. Гурвалжингийн аль нэг өнцөг нь /Зур. 22/ мохоо байвал мохоо өнцөгт гурвалжин гэнэ.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 69

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 97

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 103

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 127

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 181

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 122

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 118

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 129

 
Энэ долоо хоногт

Арифметик прогрессын ялгавар тэгтэй тэнцүү биш. Энэхүү прогрессын 1-р гишүүнийг 2-р гишүүнээр, 2-р гишүүнийг 3-р гишүүнээр, 3-р гишүүнийг 1-р гишүүнээр үржүүлэхэд гарах тоонууд өгөгдсөн дарааллаар геометрийн прогресс үүсгэдэг бол геометр прогессын хуваарийг ол.

Нээгдсэн тоо : 1338

 

Бөмбөрцөгт багтсан зөв дөрвөн өнцөгт пирамидийн суурь нь бөмбөрцөгийн төвийг дайрч байв. Пирамидийн эзэлхүүн 18-тай тэнцүү бол бөмбөрцөгийн радиусийг ол.

Нээгдсэн тоо : 1467

 

Зөв зургаан өнцөгт пирамидийн апофем h -тэй тэнцүү бөгөөд сууртай үүсгэх хоёр талст өнцөг 600 градус бол пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 43