Алгебрын тэгшитгэлийг бодох аргууд

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

2. Квадрат тэгшитгэл

n=2 байхад дээрх бичлэг ax2+bx+c=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг квадрат тэгшитгэл гэх бөгөөд томьёогоор эсвэл Виетийн теоремоор бодогдоно. Дэлгэрэнгүй мэдээллийг Квадрат тэгшитгэлийг бодох хичээлээс үзээрэй.

3. Рационал бутархай төрлийн тэгшитгэл.

Ийм тэгшитгэлийг доорх схемээр бодно.

  • Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргана.
  • Тэгшитгэлийн зүүн талын бүх гишүүдийг ерөнхий хуваарьт оруулна. Өөрөөр хэлбэл тэгшитгэлийг хэлбэрт оруулна.
  • f2(x)≠0 үед f1(x)=0 тэгшитгэлийг бодно.

Бодлого 3.046
тэгшитгэлийг бод.

Бодолт

Рационал бутархай хэлбэрийн тэгшитгэлийг бодохдоо хуваарийг тэгтэй тэнцүүлэх үл мэдэгдэгчийн утгыг заавал тооцож тэдгээрийг тэгшитгэлийн шийдээс хасах хэрэгтэйг санаарай.

4. Бүлэглэх арга.

Тэгшитгэлийн гишүүдийг бүлэглэн илэрхийллийг эмхэтгэх аргуудыг ашиглан боломжтой бол тэгшитгэлийн зүүн хэсгийг үржигдхүүнүүдийн үржвэр хэлбэрт оруулаад баруун хэсэгт тэг үлдээнэ. Дараа нь үржигдхүүн бүрийг тэгтэй тэнцүүлэн бодож шийдийг олох арга.

Бодлого 3.047
тэгшитгэлийг бод.

Бодолт

Алгебрийн тэгшитгэлийг бодоход илэрхийллийг үржигдхүүнд задлах аргуудыг ихээр ашигладагийг дээрх жишээ баталж байна.

5. Орлуулах арга

Тэгшитгэлд давтагдаж байгаа илэрхийллийг шинэ үл мэдэгдэгчээр орлуулаад тэгшитгэлийг энгийн хэлбэрт шилжүүлэн бодоод гарсан шийдийг орлуулгад буцаан тавих замаар анхдагч тэгшитгэлийн шийдийг олох универсал арга. Аргыг алгебрийн гэлтгүй өөр бусад төрлийн тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг.

Бодлого 3.048
тэгшитгэлийн шийдүүд бол a, b, c, d -г ол.

Бодолт

Арай хүндхэн тохиолдолд тэгшитгэлд эхмэтгэл хийсний дараа орлуулга харагдаж болно. Жишээ нь

Бодлого 3.049
тэгшитгэлийг бод.

Бодолт

6. Сонгох арга.

Дээд эрэмбийн тэгшитгэлүүдийг бодохдоо p/q хэлбэрийн шийдийг хайх хэрэгтэй. Энд p - a0 -ийн хуваагч, q - an -ийн хуваагч байх анхны тоонууд байна. Арга нь илэрхийллийг үржигдхүүнд задлах олон гишүүнтийг хоёр гишүүнтэд хуваах аргатай нягт холбоотой байдаг тул холбогдох хичээлийг үзнэ үү.

Бодлого 3.050
тэгшитгэлийг бод.

Бодолт

7. Модул агуулсан тэгшитгэлийг бодох.

Модул агуулсан тэгшитгэлийг бодохдоо модулийн тодорхойлолт болон интервалын аргыг ашиглана. Аргын ерөнхий схем нь

  • Тэгшитгэлийн модулд байгаа илэрхийллүүдийг тэгтэй тэнцүүлэн утгыг олно.
  • Олдсон утгуудыг тоон тэнхлэгт тэмдэглэнэ.
  • Тоон тэнхлэгийн хуваагдсан интервал бүрд тэгшитгэлийн шийдийг тооцно.

Бодлого 3.051
тэгшитгэлийг бод.

Бодолт

Зарим тохиолдолд модулийн чанарыг ашиглан модулаас салж болно.

Бодлого 3.052
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3246 Төлбөртэй

хэлбэрийн тэгшитгэлийн системийг хоёр үл мэдэгдэгчтэй хоёр шугаман тэгшитгэлийн систем гэнэ.Энд a, b, c, d, e, f нь өгөгдссөн тоонууд. x, y нь үл мэдэгдэгчид. a, b, c, d тоонууд нь үл мэдэгдэгчдийн коэффициентүүд, e, f сул гишүүд. Ийм тэгшитгэлийн системийг үндсэн хоёр аргаар боддог.

Орлуулах арга

  1. Аль нэг тэгшитгэлээс аль нэг үл мэдэгдэгчийг жишээлбэл x-г нөгөө үл мэдэгдэгч y болон коэффициентүүдээр илэрхийлнэ. x=(c-by)/a [ 2 ]
  2. Хоёрдугаар тэгшитгэлд x -ийг орлуулж бичнэ. d(c-by)/a+ey=f
  3. Сүүлчийн тэгшитгэлээс y-г олно. y=(af-cd)/(ae-bd)
  4. y-ийн утгыг [ 2 ] илэрхийлэлд орлуулна. x=(ce-bf)/(ae-bd)

  Нээгдсэн тоо: 4796 Бүртгүүлэх

Үйлдлийн дараалал. Хаалт

Үйлдлүүдийн үр дүн нь тэдгээрийн дарааллаас хамаардаг.

Жишээ.  8 – 3 + 4 = 9

Хэрвээ эхлээд 3 дээр 4 -г нэмээд гарсан нийлбэрийг 8 аас хасвал 1 гарна. Иймд зөв үр дүн гаргахын тулд тодорхой үйлдлийн дараалал тогтоосон байх шаардлагатай. Ямар дараалалаар үйлдлийг хийхийг хаалтын тусламжтайгаар тогтоож өгдөг. Хэрвээ бичлэгт хаалт оролцоогүй тохиолдолд үйлдлүүд доорхи дарааллаар хийгдэнэ.

  1. Зэрэг дэвшүүлэх , язгуураас гаргах
  2. Үржүүлэх , хуваах
  3. Нэмэх , хасах

  Нээгдсэн тоо: 11984 Нийтийн

Энэ удаа тооны машин ашиглахгүйгээр том тооноос хэрхэн язгуур авах талаар үзье. Үүнийг мэдэж байх нь шалгалт шүүлэг гэлтгүй ерөнхий тохиолдолд ч хэрэгтэй. Тоог үржигдхүүнд задлаад язгуур авчихна гэж бодвол энгийн мэт. Жишээ нь 291600 гэсэн тоог үржигдхүүнд задалбал
болно. Эндээс тооцоог хийвэл

гээд л болоо. Тоо 2, 3, 4 гэх мэтээр үржигдхүүнд задарвал арга нь дажгүй. Гэхдээ нэг асуудал бий. Язгуураас гаргах тоо маань анхны тоонуудыг үржвэр хэлбэрээр задарч байвал яах вэ? Жишээ нь 152881 нь 17·17·23·23 гэж задарна. Эдгээр хуваагчийг шууд олох гээд үзээрэй. Нилээд хүндхэн байх болов уу.

  Нээгдсэн тоо: 16667 Бүртгүүлэх

Хамгийн их ерөнхий хуваагч

Хэд хэдэн тооны ерөнхий хуваагч гэдэг нь эдгээр тоонуудын бүгдийнх нь хуваагч байдаг тоог хэлдэг. Жишээ нь 36, 60, 42 гэсэн тоонууд нь 2, 3, 6 гэсэн ерөнхий хуваагчтай байна. Ерөнхий хуваагчдын дотроос хамгийн их хуваагчийг хамгийн их ерөнхий хуваагч буюу / ХИЕХ / гэдэг. Тэгвэл дээрх жишээнээс 6 бол 36, 60, 42 тоонуудын / ХИЕХ / юм.

Тоонуудын / ХИЕХ / -ийг олохын тулд:

  1. Тоо тус бүрийг анхны тоон үржвэрт задлана. Жишээ нь  360 = 2 · 2 · 2 · 3 · 3 · 5
  2. Бүх анхны тооны зэргийн үржвэрт оруулна. Жишээ нь 360 = 2 · 2 · 2 · 3 · 3 · 5 =2³ · 3² · 5¹
  3. Бүх тооны үржвэрт орсон ерөнхий хуваагчийг бичнэ
  4. Үржвэрүүдээс хамгийн бага зэрэгтэй хуваагчийн зэргийг авна
  5. Гарсан хуваагчийн зэргийг бүгдийг үржүүлнэ

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 195

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 277

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 234

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 339

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 376

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 395

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 461

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 519

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 555

 
Энэ долоо хоногт

Кубын ирмэг a. Дээд талын төвийг суурийн оройтой холбоход үүсэх пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 1486

 

A=(-2; 3; 5), B=(4; -1; 7) векторууд өгөгджээ. 3A-2B векторын координатуудын нийлбэрийг ол.

Нээгдсэн тоо : 1068

 

Утасны лавлах номыг дэлгэн 7 цифрээс бүрдсэн дугаарыг санамсаргүйгээр байдлаар сонгоход дугаарын сүүлийн дөрвөн цифрүүд ижил байх хувилбарын тоог ол.

Нээгдсэн тоо : 299