Алгебрын тэгшитгэлийг бодох аргууд

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

2. Квадрат тэгшитгэл

n=2 байхад дээрх бичлэг ax2+bx+c=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг квадрат тэгшитгэл гэх бөгөөд томьёогоор эсвэл Виетийн теоремоор бодогдоно. Дэлгэрэнгүй мэдээллийг Квадрат тэгшитгэлийг бодох хичээлээс үзээрэй.

3. Рационал бутархай төрлийн тэгшитгэл.

Ийм тэгшитгэлийг доорх схемээр бодно.

  • Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргана.
  • Тэгшитгэлийн зүүн талын бүх гишүүдийг ерөнхий хуваарьт оруулна. Өөрөөр хэлбэл тэгшитгэлийг хэлбэрт оруулна.
  • f2(x)≠0 үед f1(x)=0 тэгшитгэлийг бодно.

Бодлого 3.046
тэгшитгэлийг бод.

Бодолт

Рационал бутархай хэлбэрийн тэгшитгэлийг бодохдоо хуваарийг тэгтэй тэнцүүлэх үл мэдэгдэгчийн утгыг заавал тооцож тэдгээрийг тэгшитгэлийн шийдээс хасах хэрэгтэйг санаарай.

4. Бүлэглэх арга.

Тэгшитгэлийн гишүүдийг бүлэглэн илэрхийллийг эмхэтгэх аргуудыг ашиглан боломжтой бол тэгшитгэлийн зүүн хэсгийг үржигдхүүнүүдийн үржвэр хэлбэрт оруулаад баруун хэсэгт тэг үлдээнэ. Дараа нь үржигдхүүн бүрийг тэгтэй тэнцүүлэн бодож шийдийг олох арга.

Бодлого 3.047
тэгшитгэлийг бод.

Бодолт

Алгебрийн тэгшитгэлийг бодоход илэрхийллийг үржигдхүүнд задлах аргуудыг ихээр ашигладагийг дээрх жишээ баталж байна.

5. Орлуулах арга

Тэгшитгэлд давтагдаж байгаа илэрхийллийг шинэ үл мэдэгдэгчээр орлуулаад тэгшитгэлийг энгийн хэлбэрт шилжүүлэн бодоод гарсан шийдийг орлуулгад буцаан тавих замаар анхдагч тэгшитгэлийн шийдийг олох универсал арга. Аргыг алгебрийн гэлтгүй өөр бусад төрлийн тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг.

Бодлого 3.048
тэгшитгэлийн шийдүүд бол a, b, c, d -г ол.

Бодолт

Арай хүндхэн тохиолдолд тэгшитгэлд эхмэтгэл хийсний дараа орлуулга харагдаж болно. Жишээ нь

Бодлого 3.049
тэгшитгэлийг бод.

Бодолт

6. Сонгох арга.

Дээд эрэмбийн тэгшитгэлүүдийг бодохдоо p/q хэлбэрийн шийдийг хайх хэрэгтэй. Энд p - a0 -ийн хуваагч, q - an -ийн хуваагч байх анхны тоонууд байна. Арга нь илэрхийллийг үржигдхүүнд задлах олон гишүүнтийг хоёр гишүүнтэд хуваах аргатай нягт холбоотой байдаг тул холбогдох хичээлийг үзнэ үү.

Бодлого 3.050
тэгшитгэлийг бод.

Бодолт

7. Модул агуулсан тэгшитгэлийг бодох.

Модул агуулсан тэгшитгэлийг бодохдоо модулийн тодорхойлолт болон интервалын аргыг ашиглана. Аргын ерөнхий схем нь

  • Тэгшитгэлийн модулд байгаа илэрхийллүүдийг тэгтэй тэнцүүлэн утгыг олно.
  • Олдсон утгуудыг тоон тэнхлэгт тэмдэглэнэ.
  • Тоон тэнхлэгийн хуваагдсан интервал бүрд тэгшитгэлийн шийдийг тооцно.

Бодлого 3.051
тэгшитгэлийг бод.

Бодолт

Зарим тохиолдолд модулийн чанарыг ашиглан модулаас салж болно.

Бодлого 3.052
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5940 Нийтийн

Пифагорийн теорем бол геометрийн бодлогод хамгийн ихээр ашиглагддаг теорем тул ихэнх сурагчид теоремийг сайн мэддэг. Хичээлээр теоремийн баталгаа болон Пифагорийн урвуу теоремийн талаар авч үзье. Пифагорийн теоремийн баталгааг мэдэж байх шаардлага байхгүй ч танин мэдэхүй болон ерөнхий мэдлэгийн хүрээнд танилцан ойлгох нь чухал. Энэхүү теоремийг их сургуулийн математикийн ангийн оюутнуудаар батлуулах даалгавар өгөхөд ихэнх нь чадахгүй байсан тохиолдол байдаг л юм даа.

Зөвлөмж: Ирээдүйд сургалтын үндсэн арга онлайн буюу интернет технологт суурилана гэдэг нь нэгэнт тодорхой болсон. Теле болон DVD, Flash гэх мэт зөөгч дээрх хичээлүүд өгөөж сайнгүй гэдгийг сүүлийн хоёр жил харуулсан. Хичээлийг судлан Пифагорийн теоремийн баталгааны ерөнхий логикийг ойлгож чадвал та онлайн сургалтаар өөрийгөө хөгжүүлэх боломж байна гэж үзээрэй. Нэг үзээд ойлгохгүй бол дахиад үзээрэй. Эцэст нь хичээлийн материалийг бүрэн ойлгоно гэдэгт бүү эргэлзээрэй. Материалийг бүрэн ойлгосны дараа Пифагорийн теоремийг өөр аргаар батлах гээд оролдоорой.

  Нээгдсэн тоо: 48099 Бүртгүүлэх

Хувь гэдэг нь нэгийг 100 хуваасны 1 хэсэг. 1%=0.01 Хувиар бодогдох бодлогыг үндсэнд нь 3 тєрєлд хувааж болно.

1. Өгөгдсөн тооноос хувийг олох. Өгөгдсөн тоог хувиар үржүүлээд гарсан үржвэрийг 100 д хуваана.

Жишээ Банкны хадгаламжийн хүү жилийн 6%. 10000 тєгрєгийн хадгалмж жилдээ хэдэн төгрөгөөр өсөх вэ?
Бодолт 10000 · 6 : 100 =600 төгрөг

2. Өгөгдсөн тоо нь олох тоонд эзлэх хувиар тоог олох. Өгөгдсөн тоог түүний хувийн хэмжээнд хуваагаад 100 гаар үржүүлнэ.

Жишээ Ажилчин нэгдүгээр сард 300 мян.төг цалин авсан нь жилийн цалингийн 7.5% байсан бол жилийн цалин нь хэд вэ?
Бодолт 300000 : 7.5 · 100 =4000000 төгрөг

3. Хоёр тооны нэг нь нөгөөдөө эзлэх хувийг олох. Нэгдүгээр тоогоо хоёрдугаар тоондоо хуваагаад 100 гаар үржүүлнэ.

Жишээ Үйлдвэр эхний жилд 40000, дараагийн жилд 36000 машин үйлдвэрлэжээ.Эхний жилийн хэдэн хувийг дараагийн жилд хийсэн бэ?
Бодолт 36000 : 40000 · 100 =90%

  Нээгдсэн тоо: 7217 Төлбөртэй

Нэг шулуун дээр орших хоёр цэгээр хязгаарлагдсан шулууны хэсгийг хэрчим гэнэ. Хэрчмийн хязгаарыг тодорхойлох цэгүүдийг хэрчмийн төгсгөлүүд гэж нэрлэдэг. Хэрчмийн төгсгөлүүдийг цэгээр голдуу тэмдэглэдэг.

Хэрчмийг түүний төгсгөлүүдийн цэгүүдийг тэмдэглэн тавьсан латин том үсгүүдээр тэмдэглэнэ. Жишээ нь AB эсхүл BA

  Нээгдсэн тоо: 6626 Нийтийн

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 218

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 302

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 260

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 363

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 411

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 434

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 497

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 573

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 597

 
Энэ долоо хоногт

Өдрийн хуваарьт 5 хичээл ордог. Тэгвэл 11 хичээлээс зохиож болох хуваарийн хувилбарын тоог ол. Нэг хичээл өдөрт нэг удаа л орно.

Нээгдсэн тоо : 1944

 

y=8x3 ба y=8x функцуудын графикаар хязгаарлагдсан дүрсийн талбайг ол.

Нээгдсэн тоо : 1061

 

тэгшитгэлийн язгуурууд x1 , x2 , x3 бол

Нээгдсэн тоо : 691