Алгебрын тэгшитгэлийг бодох аргууд

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

2. Квадрат тэгшитгэл

n=2 байхад дээрх бичлэг ax2+bx+c=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг квадрат тэгшитгэл гэх бөгөөд томьёогоор эсвэл Виетийн теоремоор бодогдоно. Дэлгэрэнгүй мэдээллийг Квадрат тэгшитгэлийг бодох хичээлээс үзээрэй.

3. Рационал бутархай төрлийн тэгшитгэл.

Ийм тэгшитгэлийг доорх схемээр бодно.

  • Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргана.
  • Тэгшитгэлийн зүүн талын бүх гишүүдийг ерөнхий хуваарьт оруулна. Өөрөөр хэлбэл тэгшитгэлийг хэлбэрт оруулна.
  • f2(x)≠0 үед f1(x)=0 тэгшитгэлийг бодно.

Бодлого 3.046
тэгшитгэлийг бод.

Бодолт

Рационал бутархай хэлбэрийн тэгшитгэлийг бодохдоо хуваарийг тэгтэй тэнцүүлэх үл мэдэгдэгчийн утгыг заавал тооцож тэдгээрийг тэгшитгэлийн шийдээс хасах хэрэгтэйг санаарай.

4. Бүлэглэх арга.

Тэгшитгэлийн гишүүдийг бүлэглэн илэрхийллийг эмхэтгэх аргуудыг ашиглан боломжтой бол тэгшитгэлийн зүүн хэсгийг үржигдхүүнүүдийн үржвэр хэлбэрт оруулаад баруун хэсэгт тэг үлдээнэ. Дараа нь үржигдхүүн бүрийг тэгтэй тэнцүүлэн бодож шийдийг олох арга.

Бодлого 3.047
тэгшитгэлийг бод.

Бодолт

Алгебрийн тэгшитгэлийг бодоход илэрхийллийг үржигдхүүнд задлах аргуудыг ихээр ашигладагийг дээрх жишээ баталж байна.

5. Орлуулах арга

Тэгшитгэлд давтагдаж байгаа илэрхийллийг шинэ үл мэдэгдэгчээр орлуулаад тэгшитгэлийг энгийн хэлбэрт шилжүүлэн бодоод гарсан шийдийг орлуулгад буцаан тавих замаар анхдагч тэгшитгэлийн шийдийг олох универсал арга. Аргыг алгебрийн гэлтгүй өөр бусад төрлийн тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг.

Бодлого 3.048
тэгшитгэлийн шийдүүд бол a, b, c, d -г ол.

Бодолт

Арай хүндхэн тохиолдолд тэгшитгэлд эхмэтгэл хийсний дараа орлуулга харагдаж болно. Жишээ нь

Бодлого 3.049
тэгшитгэлийг бод.

Бодолт

6. Сонгох арга.

Дээд эрэмбийн тэгшитгэлүүдийг бодохдоо p/q хэлбэрийн шийдийг хайх хэрэгтэй. Энд p - a0 -ийн хуваагч, q - an -ийн хуваагч байх анхны тоонууд байна. Арга нь илэрхийллийг үржигдхүүнд задлах олон гишүүнтийг хоёр гишүүнтэд хуваах аргатай нягт холбоотой байдаг тул холбогдох хичээлийг үзнэ үү.

Бодлого 3.050
тэгшитгэлийг бод.

Бодолт

7. Модул агуулсан тэгшитгэлийг бодох.

Модул агуулсан тэгшитгэлийг бодохдоо модулийн тодорхойлолт болон интервалын аргыг ашиглана. Аргын ерөнхий схем нь

  • Тэгшитгэлийн модулд байгаа илэрхийллүүдийг тэгтэй тэнцүүлэн утгыг олно.
  • Олдсон утгуудыг тоон тэнхлэгт тэмдэглэнэ.
  • Тоон тэнхлэгийн хуваагдсан интервал бүрд тэгшитгэлийн шийдийг тооцно.

Бодлого 3.051
тэгшитгэлийг бод.

Бодолт

Зарим тохиолдолд модулийн чанарыг ашиглан модулаас салж болно.

Бодлого 3.052
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2245 Төлбөртэй

Энэ нийтлэлээр элсэлтийн ерөнхий шалгалтын хүрээнд ирдэг тригнометрийн бодлогуудаас арай хүндэвтэр тэгшитгэлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе. Ийм төрлийн тэгшитгэлүүдийг бодож сурах нь танд ямар нэгэн олимпиад, нэмэлт сонгон шалгаруулалтанд /жишээ нь тэтгэлэгт хөтөлбөрт хамрагдах шалгалтууд/ хэрэг болж мэднэ ээ. Та тригнометрийн тэгшитгэлүүдийг бодох стандарт аргуудын талаар эндээс үзээрэй.

  Нээгдсэн тоо: 34766 Нийтийн

Гаргалтын томьёо

Эдгээр томьёог

  • 90° их өнцгийн тригнометрийн функцийн тоон утгыг олох;
  • Энгийн илэрхийэл болгож хувиргалт хийхэд;
  • 360° их болон сөрөг утгатай өнцгийг хувиргахад;

ашигладаг.

  Нээгдсэн тоо: 3275 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

  Нээгдсэн тоо: 832 Бүртгүүлэх

Тоон завсар гэдэг нь координатийн шулуунд дүрсэлж болох тоон ологлог юм. Тоон завсарт цацраг, хэрчим, интервал, хагас интервалууд орно. Тоон олонлогуудыг функцийн тодорхойлогдох болон утгын муж, тэнцэлтгэл бишийн шийдүүд, тэнцэтгэл биш зэрэгт өргөн ашигладаг тул тэдгээрийн хэлбэр, тэмдэглэгээг бүрэн ойлгон мэдсэн байх хэрэгтэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 36

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 40

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 57

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 177

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 226

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 232

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 264

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 257

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 341

 
Энэ долоо хоногт

олон гишүүнтийг үржигдхүүн болгон задал.

Нээгдсэн тоо : 819

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 930

 

Тоног төхөөрөмжийн сайжруулалтын үр дүнд ажилчны хөдөлмөрийн бүтээмж жилд хоёр удаа нэг ижил хувиар дээшилжээ. Хэрвээ ажилчин нэг ижил хугацаанд өмнө нь 2500 х.н харин одоо 2809 х.н бутээгдхүүн хийдэг болсон бол хөдөлмөрийн бүтээмж өсөх бүрдээ хэдэн хувиар өссөн бэ?

Нээгдсэн тоо : 385