Алгебрын тэгшитгэлийг бодох аргууд

Алгебрийн тэгшитгэл гэдэгт хэлбэрээр өгөгдсөн тэгшитгэлийг ойлгоно. Энд an, an-1, ... , a0 - өгөгдсөн тоонууд, x - үл мэдэгдэгч, n - үл мэдэгдэгчийн хамгийн их зэрэг буюу алгебрийн тэгшитгэлийн зэрэг гэж нэрлэнэ. Алгебрийн тэгшитгэлүүдийн төрлүүд болон тэдгээрийг бодох аргуудтай танилцгаая.

1. Шугаман тэгшитгэл

n=1 байхад дээрх бичлэг ax+b=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг шугаман тэгшитгэл гэх бөгөөд дараах аргаар бодно.

  • Хэрвээ a≠0, b бодит тоо байвал x=b/a шийдтэй, Жишээ.  x-3=2-4x x+4x=2+3 5x=5 x=1
  • Хэрвээ a=0, b=0 бол x дурын тоо байна. Жишээ. 2x+3=5x+5-3x-2 2x-5x+3x=5-2-3 0=0 x -дурын тоо
  • Хэрвээ a=0, b≠0 бол тэгшитгэл шийдгүй. Жишээ. 2x+1=5x+5-3x-2 2x-5x+3x=5-2-1 0=2 шийдгүй.

2. Квадрат тэгшитгэл

n=2 байхад дээрх бичлэг ax2+bx+c=0 хэлбэртэй болох бөгөөд ийм төрлийн тэгшитгэлийг квадрат тэгшитгэл гэх бөгөөд томьёогоор эсвэл Виетийн теоремоор бодогдоно. Дэлгэрэнгүй мэдээллийг Квадрат тэгшитгэлийг бодох хичээлээс үзээрэй.

3. Рационал бутархай төрлийн тэгшитгэл.

Ийм тэгшитгэлийг доорх схемээр бодно.

  • Тэгшитгэлийн бүх гишүүдийг тэнцүүгийн тэмдгийн зүүн талд гаргана.
  • Тэгшитгэлийн зүүн талын бүх гишүүдийг ерөнхий хуваарьт оруулна. Өөрөөр хэлбэл тэгшитгэлийг хэлбэрт оруулна.
  • f2(x)≠0 үед f1(x)=0 тэгшитгэлийг бодно.

Бодлого 3.046
тэгшитгэлийг бод.

Бодолт

Рационал бутархай хэлбэрийн тэгшитгэлийг бодохдоо хуваарийг тэгтэй тэнцүүлэх үл мэдэгдэгчийн утгыг заавал тооцож тэдгээрийг тэгшитгэлийн шийдээс хасах хэрэгтэйг санаарай.

4. Бүлэглэх арга.

Тэгшитгэлийн гишүүдийг бүлэглэн илэрхийллийг эмхэтгэх аргуудыг ашиглан боломжтой бол тэгшитгэлийн зүүн хэсгийг үржигдхүүнүүдийн үржвэр хэлбэрт оруулаад баруун хэсэгт тэг үлдээнэ. Дараа нь үржигдхүүн бүрийг тэгтэй тэнцүүлэн бодож шийдийг олох арга.

Бодлого 3.047
тэгшитгэлийг бод.

Бодолт

Алгебрийн тэгшитгэлийг бодоход илэрхийллийг үржигдхүүнд задлах аргуудыг ихээр ашигладагийг дээрх жишээ баталж байна.

5. Орлуулах арга

Тэгшитгэлд давтагдаж байгаа илэрхийллийг шинэ үл мэдэгдэгчээр орлуулаад тэгшитгэлийг энгийн хэлбэрт шилжүүлэн бодоод гарсан шийдийг орлуулгад буцаан тавих замаар анхдагч тэгшитгэлийн шийдийг олох универсал арга. Аргыг алгебрийн гэлтгүй өөр бусад төрлийн тэгшитгэлүүдийг бодоход өргөнөөр ашигладаг.

Бодлого 3.048
тэгшитгэлийн шийдүүд бол a, b, c, d -г ол.

Бодолт

Арай хүндхэн тохиолдолд тэгшитгэлд эхмэтгэл хийсний дараа орлуулга харагдаж болно. Жишээ нь

Бодлого 3.049
тэгшитгэлийг бод.

Бодолт

6. Сонгох арга.

Дээд эрэмбийн тэгшитгэлүүдийг бодохдоо p/q хэлбэрийн шийдийг хайх хэрэгтэй. Энд p - a0 -ийн хуваагч, q - an -ийн хуваагч байх анхны тоонууд байна. Арга нь илэрхийллийг үржигдхүүнд задлах олон гишүүнтийг хоёр гишүүнтэд хуваах аргатай нягт холбоотой байдаг тул холбогдох хичээлийг үзнэ үү.

Бодлого 3.050
тэгшитгэлийг бод.

Бодолт

7. Модул агуулсан тэгшитгэлийг бодох.

Модул агуулсан тэгшитгэлийг бодохдоо модулийн тодорхойлолт болон интервалын аргыг ашиглана. Аргын ерөнхий схем нь

  • Тэгшитгэлийн модулд байгаа илэрхийллүүдийг тэгтэй тэнцүүлэн утгыг олно.
  • Олдсон утгуудыг тоон тэнхлэгт тэмдэглэнэ.
  • Тоон тэнхлэгийн хуваагдсан интервал бүрд тэгшитгэлийн шийдийг тооцно.

Бодлого 3.051
тэгшитгэлийг бод.

Бодолт

Зарим тохиолдолд модулийн чанарыг ашиглан модулаас салж болно.

Бодлого 3.052
тэгшитгэлийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5576 Нийтийн

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

  Нээгдсэн тоо: 5885 Бүртгүүлэх

Вектор ба түүний үйлдлүүдийн талаар энэ хичээлээр авч үзье. Вектортой холбоотой бодлогууд дээр сурагчид будлих, алдаа гаргах нь элбэг байдаг. Ойлголт энгийн мэт боловч векторуудын нийлбэр, ялгавар, үржвэр зэргийг зөв ойлгохгүйгээр бодлого бодоход хүндрэл үүснэ. ЕБС-д энэ сэдвийн хичээлийг их өнгөцхөн үздэгээс сурагчид дутуу ойлгон улмаар бодлогод дээр дүрмүүдийг хэрэглэхдээ их сул байдаг. Иймээс вектор түүнтэй хийгдэх үйлдлүүдийг нэг мөр цэгцлэн тэдгээрийг бодлого бодоход ашиглаж сурахад хичээл зориулагдсан. Эхлээд ерөнхий ойлголтуудын талаар.

  Нээгдсэн тоо: 19748 Нийтийн

Бага тооноос их тоог хасахад сөрөг тоо гарна.

Жишээ. 10-15=-5

5 ын тооны өмнө байгаа «-» тэмдэг нь уг тоог сөрөг тоо болохыг илтгэнэ.
Бүхэл сөрөг тоон цуваа нь төгсгөлгүй.

-1, -2, -3, -4, -5, …

Бага бутархай тооноос их бутархай тоог хасахад сөрөг бутархай тоо гарна.

Жишээ



  Нээгдсэн тоо: 5939 Нийтийн

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 2

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 9

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 11

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 13

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 12

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 15

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 22

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 21

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 19

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 995

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2217

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 546