Үзэгдэл

Магадлалын онолд үзэгдэл гэдгийг санамсаргүй төгсгөлтэй туршилтаар тохиолдох эсвэл эс тохиолдох дурын үр дүнг ойлгоно. Ийм туршилтын хамгийн энгийн үр дүнг / жишээлбэл зоосон мөнгийг хаяхад тоогоор эсвэл сүлдээрээ унах, хөзөр дундаас нэгийг сугалахад тамга гарч ирэх, шоог хаяхад тодорхой тоо гарч ирэх г.м / эгэл үзэгдэл гэнэ.
Эгэл үзэгдлүүдийн олонлог E -г эгэл үзэгдлийн орон зай гэдэг. Шоо шидэхэд энэ орон зай нь зургаа харин хөзөрөөс карт сугалахад 52 эгэл үзэгдлээс бүрдэнэ. Үзэгдэл нь нэг эсвэл хэд хэдэн эгэл үзэгдлээс бүрдэж болно. Жишээ нь : Хөзрөөс карт сугалахад дараалан хоёр тамга гарч ирэх, шоог гурван удаа хаяхад нэг ижил буух тоо г.м  Тэгвэл үзэгдэл гэдгийг эгэл үзэгдлийн орон зайны дурын дэд олонлог гэж тодорхойлж болно.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 551 Төлбөртэй

Математикийн бүх илэрхийллүүд хамгийн сүүлд хийгдэх үйлдлээрээ нэрлэгддэг. Үүнийг сайн тогтоон аваарай. Учир нь сурагчид илэрхийллийг хараад a дээр нэмэх b хасах нь c үржих нь d гэх мэтээр унших гээд байх нь элбэг. Энэ нь таны алгебрийн анхан шатны мэдлэггүй гэж үзэхэд хүргэх том асуудал болохыг сануулъя.

Иймээс хичээлээр илэрхийллийг хэрхэн зөв уншихыг сурцгаая.

  Нээгдсэн тоо: 8057 Нийтийн

Язгуур доор үл мэдэгдэгчийг агуулсан тэгшитгэлийг иррационал тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодохдоо тэгшитгэлд байгаа язгуурууд арифметикийн байх ёстой гэсэн нөхцлийг тооцон үл мэдэгдэгчийн утгын мужийг заавал тооцох хэрэгтэй. Үүнийг тооцоогүйгээс ихэнх алдаанууд гардаг. Хичээлээр иррационал тэгшитгэлийг бодох аргуудын талаар авч үзэх болно.

  Нээгдсэн тоо: 4660 Бүртгүүлэх

O гэсэн нэг цэгээс / өнцгийн орой / гарсан OA , OB хоёр цацрагаас / өнцгийн талууд / үүссэн геометрийн дүрсийг өнцөг гэнэ. /Зур. 1/

Өнгийг тэмдэг ба өнцгийн орой, төгсгөлүүдийг заасан 3 үсгээр гэж тэмдэглэнэ. Ингэхдээ оройг илэрхийлэх үсгийг дунд нь бичнэ. Өнцгийг OA цацраг O оройг тойрон OB цацрагтай давхцах хүртэл эргэлтээр хэмжинэ. Радиан ба градус гэсэн хоёр нэгжийг өнцгийн хэмжээнд голлон ашигладаг.

  Нээгдсэн тоо: 4306 Төлбөртэй

Тохиолдол 1.

a, b, c - талууд өгөгдсөн. A, B, C - өнцгүүдийг олох.

  • Косинусын теоремоор аль нэг өнцгийг олно.
  • Синусын теоремоор хоёрдох өнцгийг олно.
  • Гуравдахь өнцгийг дараах томьёогоор олно.

 

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 211

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 295

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 252

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 354

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 402

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 424

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 489

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 561

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 587

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1103

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 307