Бодлого 5.071
Тооцоог хий. (ЭЕШ 2018-D 2.1)

тоонууд гурвалжины талууд болдог байх α -г ольё.  

  1. Тэгвэл гэдгээс нөхцөл биелэхэд л хангалттай.
  2. Иймд байна.
  3. Эндээс байна.

Бодолт

  1. Гурвалжны хоёр талын нийлбэр үлдсэн талаасаа их байдаг. Иймээс биелэх ёстой. Косинус, синус функцуудын утгын муж -1 -ээс 1 -ийн хооронд байдаг ч тоонууд гурвалжны талууд болдог гэсэн учраас нэмэх утгуудтай байх ёстой гэдгээс нөхцлүүд гарах бөгөөд Эндээс нөхцөл биелэхэд л хангалттай. Учир нь косинус, синусын утгууд нэгж радиустай тойрог дээр байгуулсан тэгш өнцөгтийн катетууд байдаг тул хоёр катетын нийлбэр гипотенуз буюу 1 -ээс их байхад л эдгээр нь гурвалжин үүсгэнэ. Иймээс a=1 гэж гарна.
  2. Гурвалжны нэг талыг хувиргавал болох бөгөөд хувиргалтын томьёогоор гэж гарах ба үүнийг нөхцөлд тавиад модулийг задалбал синусын утга 1/2 -ээс их эсхүл -1/2 -ээс бага байхад анхдагч тэнцэтгэл биш биелэнэ. Модулаас хэрхэн гаргахыг сайтын бусад бодлогоос үзээрэй. Эндээс b=1; c=1; гэж гарна.
  3. Сүүлд гаргасан тэнцэтгэл бишийг бодьё. Тригнометрийн тэнцэтгэл биш тэгшитгэлийг бодох үндсэн арга бол тэдгээрийг энгийн хэлбэрт оруулах байдаг. Иймээс α/3=t гэсэн орлуулга хийн энгийн тэнцэтгэл биш болгоод бодолтыг хийвэл гэсэн хариу гарна. Бодолтыг нэгж тойрог дээр харуулбал гэж харагдана. Зураг дээрх ногоон хэсэг бол синусын утга 0,5 -аас их байх хэсэг харин хөх хэсэг бол синусын утга -0,5 -аас бага байх хэсэг. Хэсгүүдийн хил хоорондох өнцгүүд тэнцэтгэл бишийг хангах бөгөөд синусын үеэр үелэх ёстой. Ер нь энгийн тэнцэтгэл биш, тэгшитгэлийн шийдийг цээжээр мэдэж байх ёстой. Үгүй бол асуудал үүснэ. Хоёр тэнцэтгэл бишийг тус тусд нь бодоод дараа нь шийдийг нэгтгэсэнг анхаарна уу. Синусын үе байдаг ч шийдүүдийг нэгтгэхэд πn болно. Учир нь π/6 өнцөг гээр шилжихэд өөрөөр хэлбэл n=-1 үед -6π/5 утгыг авна. Шийдүүдийн хилүүд 180 буюу π -гээр шилжихэд хоёр тэнцэтгэл бишийг хангах утгын мужид шилжиж байгааг зурагт тэнхлэгийн эхийг дайран шийдүүдийн хилийг холбосон шугам тодорхой харуулна. Бодлогын тайлбар ойлгож байгаа хүнд илүү зүйл мэт боловч сайтын хэрэглэгчдийн мэдлэгийн түвшин өөр, сургалт талаасаа аль болохоор дэлгэрэнгүй тайлбарлахыг оролдсон болно. Бид α/3=t гэсэн орлуулга хийсэн учраас -ийг бодлогын шийд гэж ойлгож болохгүй. Орлуулгыг буцаан тавивал болох ба эндээс d=2; f=5; g=2; e=3 гэж гарна.

Хариу

a=1; b=1; c=1; d=2; f=5; g=2; e=3

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 997

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1874

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 1089

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 841

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 133

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 196

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 200

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 220

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 218

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 298

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 227

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 222

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 222

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1361

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1493

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1037