Үржэх дүрэм

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Байр сэлгэх

Үржигдхүүн болон үржигчийн байрыг солиход үржвэр өөрчлөгдөхгүй нь доорх зураг дээрх однуудын тоог гаргаж буй хоёр аргаас харагдана.

arif05_02_01

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл тул дээрх зураг дээрх однуудын нийт тоог 3·4 эсхүл 4·3 үржвэрээр олох боломжтой. Үржигдхүүн болон үржигчийн байрыг солих боломжтой тул тэдгээрийг үржигдхүүнүүд гэж ч бас нэрлэдэг.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6303 Бүртгүүлэх

Урвуу функц

Хэрвээ аргумент ба функцийн үүргийг соливол y ээс хамаарсан x функц болно. Энэ тохиолдолд урвуу функц гэсэн ойлголт гарч ирнэ.
гэсэн функц байсан гэе. Энд u нь аргумент, v нь функц. Хэрвээ эдгээрийн үүргийг соливол v ээс хамаарсан u функц гарна.
Одоо дээрх хоёр функцийн аргументийн нь x, функцийн нь y гэвэл гэсэн нэг нь нөгөөдөө урвуу хоёр функц гарна.

  Нээгдсэн тоо: 4952 Бүртгүүлэх

Хоёрдугаар эрэмбийн алгебрын тэгшитгэлийг квадрат тэгшитгэл гэнэ.

Энд a, b, c өгөгдсөн тоон болон үсгэн коэффициентууд. x нь үл мэдэгдэгч. Хэрвээ a=0 бол шугаман тэгшитгэл болно. Иймээс бид энд зөвхөн a≠0 тохиолдолыг авч үзнэ. Тэгвэл тэгшитгэлийн бүх гишүүдийг a -д хуваавал дараах тэгшитгэл гарна.

Энд p=b/a, q=c/a. [2] тэгшитгэлийг эмхэтгэсэн квадрат тэгшитгэл гэдэг. Харин [1] тэгшитгэлийг гүйцэд квадрат тэгшитгэл гэнэ. Хэрвээ b эсвэл c эсвэл хоёулаа тэгтэй тэнцүү тохиолдолд тэгшитгэлийг дутуу квадрат тэгшитгэл гэнэ.

  Нээгдсэн тоо: 4218 Бүртгүүлэх

Тоон дараалал

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу ямар нэгэн un тоогоор соливол шинэ тоон цуваа үүснэ.
тэмдэглэгээ

  Нээгдсэн тоо: 3409 Төлбөртэй

Хугархай эсхүл тахир шугам гэдэг нь нэг хэрчмийн төгсгөл нь дараагийн хэрчмийн эхлэл болсон дараалуулан холбосон геометрийн дүрс. Ийм холболтод зэрэгцээ орших буюу ерөнхий цэгтэй хэрчмүүд нэг шулуун дээр байрлах ёсгүй. Хэрвээ зэрэгцээ хэрчмүүд нэг шулуун дээр байвал эдгээр нь нэг хэрчим эсхүл хэрчмүүдийн нийлбэр болно гэдгийг Хэрчим хичээлд үзсэн.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 289

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 352

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 399

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 419

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 485

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 551

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 580

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1096

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 303