Тэнцэл

Тэнцүүгийн (=) тэмдгээр холбогдсон хоёр тоон эсхүл үсгэн илэрхийлэл тэнцлийг бүрдүүлнэ. Тэнцүүгийн (=) тэмдгийн зүүн орших илэрхийллийг зүүн буюу нэгдүгээр харин баруун орших илэрхийллийг баруун буюу хоёрдахь хэсэг гэнэ.

Тэнцлийн хэсгүүдийн байрыг сольж болно. Жишээ нь дээрх 10x-7=15+3x тэнцлийн хэсгүүдийн байрыг солин 15+3x=10x-7 гэж бичиж болно. Тэнцэл адитгал, тэгшитгэл гэсэн хоёр төрөлд худаагдана.

Тэнцлийн шинжүүд

Бүх тэнцлүүд хувиргалт, тэгшитгэлийн бодолтууд сууриладаг хоёр шинжтэй.

  1. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр нэмэгдүүлэх эсхүл багасгахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл a + m = b + m болон a - m = b - m тэнцлүүдтэй эн чацуу.
  2. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр үржүүлэх эсхүл хуваахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл am = bm эсхүл a/m = b/m тэнцлүүдтэй эн чацуу.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 584 Нийтийн

Арифметикийн үйлдлүүдийн шинжүүдийг мэдэхгүй ч хүмүүс тэдгээрийг тооцоонд өргөн ашигладаг. Энэ удаа үржвэрийн шинжүүдийг аьч үзье.

Байр солих шинж.

Үржигдхүүнүүдийн байрыг солиход үржвэр өөрчлөлгдөхгүй. Өөрөөр хэлбэл үржвэрт орж буй гишүүдийн байрыг солиход үржвэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a·b=b·a байна.

Жишээ

6·7=7·6 = 42
4·2·3=3·2·4 = 24
a·b·c=c·a·b=b·c·a

  Нээгдсэн тоо: 4201 Төлбөртэй

ЕБС-ын ахлах ангид математик анализын эхлэл болох хязгаар, уламжлал, интеграл зэрэг сэдвүүдийг эхлэл байдлаар үздэг. Эдгээр сэдвүүдийг сайн ойлгох нь цаашид их сургуульд дээд математикийн хичээлүүдэд амжилттай суралцах үндсэн суурь болдог. Хэдийгээр сэдвүүдийг эхлэлийн хэмжээнд үздэг ч ерөнхий шалгалт дээр дээрх сэдвийг хамарсан бодлогууд тогтмол орж ирсэн байдаг. Сурагчид сэдвүүдийн талаар баттай суурь мэдлэг олж аваагүйн улмаас бодлогыг бодохдоо алдаа гарган оноо алдах үзэгдэл их түгээмэл харагддаг. Сэдвүүд ЕБС-ын математикийн хичээлийн агуулга дотроо арай хүндхэн хэсэгт орох ч утгыг нь зөв ойлгосон тохиолдолд тийм ч аймшигтай зүйлүүд биш. Энэ хичээлээр бид хязгаар гэж юу болох түүнийг хэрхэн ойлгохыг авч үзнэ. Хязгаарыг сайн ойлгосон байхад уламжлал, интегралыг ойлгоход амархан.

  Нээгдсэн тоо: 2753 Бүртгүүлэх

Хувьсагч тригнометрийн функцэд агуулагдаж буй илэрхийллийг тригнометрийн илэрхийлэл гэдэг. Ийм төрлийн илэрхийллийг хувирган эмхэтгэл хийхэд тригнометрийн функцуудын чанар, тригнометрийн томьёонуудыг ашиглана. Тригнометрийн тэгшитгэл, тэнцэтгэл бишүүдийг бодохдоо эхлээд илэрхийлэлд хувиргалт хийн тэдгээрийг энгийн хэлбэрт шилжүүлэн боддог тул тригнометрийн илэрхийллийг хялбарчлах аргыг сайн эзэмшсэн байхад энэ сэдвийн бодлогуудыг онцын хүндрэлгүй шийднэ. Энэ хичээлээр тригнометрийн илэрхийллийг хувиргахад ашигладаг үндсэн томьёонуудыг хэрхэн хэрэглэхийг сурах болно.

  Нээгдсэн тоо: 4513 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 259

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 342

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 309

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 406

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 452

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 481

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 565

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 643

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 677

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1418

 

тэгшитгэл бод.

Нээгдсэн тоо : 1021

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1067