Тэнцэл

Тэнцүүгийн (=) тэмдгээр холбогдсон хоёр тоон эсхүл үсгэн илэрхийлэл тэнцлийг бүрдүүлнэ. Тэнцүүгийн (=) тэмдгийн зүүн орших илэрхийллийг зүүн буюу нэгдүгээр харин баруун орших илэрхийллийг баруун буюу хоёрдахь хэсэг гэнэ.

Тэнцлийн хэсгүүдийн байрыг сольж болно. Жишээ нь дээрх 10x-7=15+3x тэнцлийн хэсгүүдийн байрыг солин 15+3x=10x-7 гэж бичиж болно. Тэнцэл адитгал, тэгшитгэл гэсэн хоёр төрөлд худаагдана.

Тэнцлийн шинжүүд

Бүх тэнцлүүд хувиргалт, тэгшитгэлийн бодолтууд сууриладаг хоёр шинжтэй.

  1. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр нэмэгдүүлэх эсхүл багасгахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл a + m = b + m болон a - m = b - m тэнцлүүдтэй эн чацуу.
  2. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр үржүүлэх эсхүл хуваахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл am = bm эсхүл a/m = b/m тэнцлүүдтэй эн чацуу.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 16645 Бүртгүүлэх

Хоёр талаар нь бодох.

Тэгш өнцөгт гурвалжны хоёр тал нь өгөгдсөн тохиолдолд гуравдахь талыг Пифагорын томьёогоор тооцож олно. Хурц өнцгийг ямар хоёр тал нь өгөгдсөнөөс хамаарч тохирох тригнометрийн функцийг хэрэглэнэ. Жишээ нь a, b катетууд өгөгдсөн бол A өнцгийг олох юм.

Жишээ 1
Тэгш өнцөгт гурвалжны катет a=0.324, гипотенуз c=0.544 бол b катет ба A, B өнцгийг ол.

Бодолт
Катет нь Өнцөг нь буюу болно.

  Нээгдсэн тоо: 2125 Төлбөртэй

Өмнөх хичээлүүдээр бид ерөнхий үржигдхүүнийг хаалтнаас гаргах, бүлэглэх гэсэн хоёр аргыг сурсан. Энэ удаа үржүүлэхийн хураангуй томьёог ашиглах хүчирхэг аргатай танилцах болно. Үүнийг сурагч бүр мэднэ. Томьёонуудыг ч сайн мэднэ гэж бодож байна. Тэгвэл энэ тухай ярих хэрэг байгаа юм уу гэсэн асуулт гарч болох юм. Томьёонуудыг математикт маш өргөнөөр ашигладаг. Тэдгээрийг үржүүлэх, бутархайг эмхэтгэх, тэгшитгэл бодох, интеграл тооцох гээд хэрэглэхгүй газаргүй. Иймээс эдгээр томьёонууд хаанаас гарч ирсэн, юунд хэрэгтэй, хэрхэн тогтоох, яаж хэрэглэх гээд шуудхан хэлэхэд авч үзэх зүйлүүд байна аа. Сурагчид томьёог сайн цээжилсэн мөртлөө бодлого дээр очоод бараг мэдэггүй хүн шиг болдог. Өөрөөр хэлбэл ашиглах тал дээр ноотой.

  Нээгдсэн тоо: 4311 Төлбөртэй

Тригнометрийн хувиргалт, тэгшитгэл, тэнцэтгэл биш гээд тригнометрийн бодлогод хувиргалтын томьёонуудыг өргөнөөр ашигладаг. Эдгээр томьёонууд нилээд олон тооны дээр өөр хоорондоо их төстэй байдаг нь сурагчдыг төөрөгдөлд оруулах явдал ихээр гардаг. Томьёонуудыг цээжилнэ гэвэл нилээд хэцүү тэгээд ч алдах нь гарцаагүй. Энэ хичээлээр хувиргалтын томьёог цээжлэхгүйгээр хэрхэн зөв гаргах талаар авч үзэх болно. Сайн анхааралтай уншаад аргачлалыг тогтоон аваарай.
Хувиргалтын томьёонуудын талаар ярилцахаас өмнө зарим нэгэн ухагдхууны талаар тохиролцох хэрэгтэй. Тэгэхлээр f(x) - гэдгийг sinx, cosx, tgx, ctgx функцуудын аль нэг нь гэе. cof(x) -ээр f(x) функцын кофункцыг тэмдэглэе. Кофункц гэдэг нь синусын хувьд косинус, косинусын хувьд синус харин тангенсийн хувьд котангенс, котангенсийн хувьд тангенс гэсэн үг юм. Илүү ойлгомжтойгоор

  Нээгдсэн тоо: 2617 Төлбөртэй

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 200

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 283

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 240

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 345

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 389

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 407

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 470

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 530

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 564

 
Энэ долоо хоногт

Кубын ирмэг a. Дээд талын төвийг суурийн оройтой холбоход үүсэх пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 1495

 

A=(-2; 3; 5), B=(4; -1; 7) векторууд өгөгджээ. 3A-2B векторын координатуудын нийлбэрийг ол.

Нээгдсэн тоо : 1075

 

Утасны лавлах номыг дэлгэн 7 цифрээс бүрдсэн дугаарыг санамсаргүйгээр байдлаар сонгоход дугаарын сүүлийн дөрвөн цифрүүд ижил байх хувилбарын тоог ол.

Нээгдсэн тоо : 306