Тэнцэл

Тэнцүүгийн (=) тэмдгээр холбогдсон хоёр тоон эсхүл үсгэн илэрхийлэл тэнцлийг бүрдүүлнэ. Тэнцүүгийн (=) тэмдгийн зүүн орших илэрхийллийг зүүн буюу нэгдүгээр харин баруун орших илэрхийллийг баруун буюу хоёрдахь хэсэг гэнэ.

Тэнцлийн хэсгүүдийн байрыг сольж болно. Жишээ нь дээрх 10x-7=15+3x тэнцлийн хэсгүүдийн байрыг солин 15+3x=10x-7 гэж бичиж болно. Тэнцэл адитгал, тэгшитгэл гэсэн хоёр төрөлд худаагдана.

Тэнцлийн шинжүүд

Бүх тэнцлүүд хувиргалт, тэгшитгэлийн бодолтууд сууриладаг хоёр шинжтэй.

  1. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр нэмэгдүүлэх эсхүл багасгахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл a + m = b + m болон a - m = b - m тэнцлүүдтэй эн чацуу.
  2. Тэнцлийн хоёр талыг нэг ижил тоо эсхүл алгебрийн илэрхийллээр үржүүлэх эсхүл хуваахад тэнцэл чанараа буюу тэнцүү байдлаа алдахгүй. Жишээ нь a = b тэнцэл am = bm эсхүл a/m = b/m тэнцлүүдтэй эн чацуу.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6158 Төлбөртэй

Дүрсийг бүрдүүлж буй битүү тахир шугам дээрх бүх цэгүүд нэг цэгээс ижил зайнд орших геометрийн дүрсийг тойрог гэдэг. Тойргийн бүх цэгүүдээс ижил зайн орших цэгийг тойргийн төв гэж нэрлэдэг. Тойргийн төвийг латин том O үсгээр голдуу тэмдэглэдэг.

Зургаас тодорхойлолтыг илүү ойлгон авахыг хичээгээрэй.

  Нээгдсэн тоо: 1941 Төлбөртэй

Хавтгайн геометрийн дүрсүүдээс сурагчид хамгийн хэцүү, ойлгомжгүй, асуудал үүсгэдэг дүрс бол тойрог. Гурвалжин, тэгш өнцөгт, квадрат, ромбо, трапец гэх мэт дүрсүүдийн тухайд сурагчид арай илүү ойлгосон байдаг. Хичээлээр тойргийн элементүүдийн талаар ойлголт өгөхийг хичээе.

  Нээгдсэн тоо: 2805 Төлбөртэй

Олон төрлийн бодлого, хувиргалт хийхэд тригнометрийн өнцөг хаана аль үед байрлаж байгаагаас хамааран тэдгээрийн тэмдгийг тооцох хэрэгтэй болдог. Иймээс тригнометрийн функцуудын тэмдгийг мэддэг байх нь туйлын чухал. Гэхдээ эдгээрийг цээжилнэ гэвэл хүнд бөгөөд алдаа гаргах өндөр магадлалтай тул тэмдгийн учрыг ойлгох хэрэгтэй. Энэ нь илүү амар болоод найдвартайн дээр тригнометрийг ойлгох үндсэн нөхцлүүдийн нэг мөн.

  Нээгдсэн тоо: 383 Бүртгүүлэх

Нэмэгдхүүнүүдийн байрыг сэлгэх, нэгтгэх, бүлэглэх дүрмүүд нийлбэрийн тооцоог хялбар болгоход голлон ашиглагддаг бол нэмэгдхүүний өөрчлөлтөөр нийлбэрийг өөрчлөх шинж нь илэрхийллийг хялбарчлах, адитгал хувиргалтын суурь болдог. Иймээс хичээлийн материалыг сайтар судлан ойлгон авахыг хичээгээрэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 247

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 334

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 298

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 395

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 439

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 467

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 548

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 622

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 656

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1405

 

тэгшитгэл бод.

Нээгдсэн тоо : 1011

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1055