Аман дугаарлалт

Аман дугаарлалт гэдэг нь тоонуудыг үгээр илэрхийлэх юм.
Тоонуудын нэрийг мэдэж байхад ямарч зүйлийг тоолох боломжтой. Бичиг мэдэхгүй, тоонуудын тэмдэглэгээг мэдэхгүй ч хүүхдүүд аман дугаарлалтыг маш эрт сурдаг. Өөрөөр хэлбэл амаар тоолох юм.

Нэгээс арав хүртэлх тоолох

Тооллогын нэгжээр одыг ашиглая. Бидэнд хайрцагт одны дүрсүүд байгаа гэж үзээд хайрцагт хичнээн дүрс байгааг тоолоё. Үүнийг хийхийн тулд хайрцагнаас однуудыг дараалуулан аваад авсан дүрсүүдийн тоог нэрлээд байх болно.

Тооны нэр Нэгжийн тоо Тодорхойлолт
нэг Тооллогод ганцыг ширхэг зүйлийг нэг гэж хэлдэг.
хоёр Нэг нэгж дээр дахин нэгийг нэмвэл хоёр нэгж болно.
гурав Байгаа хоёр нэгж дээр хайрцагнаас дахин нэг одыг аван нэмвэл гурав болно.
дөрөв Гурван нэгж дээр дахин нэгийг нэмвэл дөрөв болно.
тав Дөрвөн нэгж дээр дахин нэгийг нэмвэл тав болно.
зургаа Таван нэгж дээр дахин нэгийг нэмвэл зургаа болно.
долоо Зургаан нэгж дээр дахин нэгийг нэмвэл долоо болно.
найм Долоон нэгж дээр дахин нэгийг нэмвэл найм болно.
ес Найман нэгж дээр дахин нэгийг нэмвэл ес болно.
арав Есөн нэгж дээр дахин нэгийг нэмвэл арав болно.

Ингэснээр хайрцагт дахь однуудыг нэг нэгээр авснаар арван од байгааг тооллоо.

Арван нэгээс хорь хүртлэх тоолол

Хайрцагт үлдсэн однуудыг үргэжлүүлэн тоолоё. Однуудыг ээлж дараагаар аван өмнө тоолсон арван нэгж дээр нэгийг нэмэх замаар дараагийн арван тооны нэрийг гаргавал

Тооны нэр Нэгжийн тоо
арван нэг
арван хоёр
арван гурав
арван дөрөв
арван тав
арван зургаа
арван долоо
арван найм
арван ес
хорь

болно. Одоо бид хорин од буюу хоёр аравтыг тооллоо.
Эндээс тоонуудын нэрийг аравтын нэрэнд "н" дагавар залгаад үүсэх нэрийн араас нэгдүгээр аравтын нэгжийн нэрийг нэмэх дүрмээр гаргаж байгаа нь харагдана.

Хориос зуу хүртлэх тооллого.

Хайрцагнаас однуудыг ээлж дараалан авч хориос цааш тоолохдоо дээрх дүрмийн дагуу хоёр аравт буюу хорь нэрэнд "н" дагавар залгаад үүсэх нэрийн араас нэгдүгээр аравтын нэгжийн нэрийг нэмвэл

  • хорин нэг
  • хорин хоёр
  • хорин гурав
  • хорин дөрөв
  • хорин тав
  • хорин зургаа
  • хорин долоо
  • хорин найм
  • хорин ес
  • гуч буюу гурван аравт

гэж тоологдоно. Зуу бол арван аравт бөгөөд аравтуудын нэрүүд

  • нэг аравт - арав
  • хоёр аравт - хорь
  • гурван аравт - гуч
  • дөрвөн аравт - дөч
  • таван аравт - тавь
  • зургаан аравт - жар
  • долоон аравт - дал
  • найман аравт - ная
  • есөн аравт - ер
  • арван аравт - зуу

байдаг. Аравтуудын нэрийг мэдэн тооны нэрийг зохиох дүрмийн баримталбал тооллогыг хэд хүртэл хийх боломжтой.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3181 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

  Нээгдсэн тоо: 456 Төлбөртэй

Математикийн тоолол гэдэг нь ямар нэгэн зүйлийн тоог тодорхойлох зорилготой үйлдэл юм. Тоолол тоон эсхүл дарааллын байж болно.

  Нээгдсэн тоо: 5046 Төлбөртэй

O төвтэй k коэффициенттэй гомотет гэдэг нь дүрсийн P цэг бүр гэсэн P1 цэгээр илэрхийлэгдэх хувиргалт юм.
Гомотет бол төстэй хувиргалт. Хувиргалтаар төстэй дүрсүүд үүсдэг. Өөрөөр хэлбэл харгалзах өнцгүүд нь тэнцүү талууд нь пропорционал дүрсүүд үүснэ гэсэн үг.

  Нээгдсэн тоо: 10064 Нийтийн

Өнцгийн хэмжээг олохыг түүнийг хэмжих гэнэ. Өөрөөр хэлбэл тухайн өнцөгт хэмжилтийн нэгжээр сонгон авсан хэмжээс хэд багтаж байгааг олно гэсэн үг.
Өнцгийг хэмжих нэгжээр ихэнхдээ градусыг хэрэглэдэг. Градус гэдэг нь дэлгэмэл өнцгийн 1/180 хэсэгтэй тэнцэх хэмжээс. Градусыг өнцгийн хэмжээг заасан тооны баруун дээд буланд 0 тэмдэгээр тавин тэмдэглэпэг. Жишээ нь 600, 750, 300 гэх мэтээр

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 289

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 369

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 336

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 431

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 481

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 504

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 597

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 689

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 723

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1553

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2013

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 990