Тригнометрийн урвуу функцүүд

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

Бүх эсрэг функцүүд нь олон утгатай. Учир нь аргументын утга бүрт функцийн хязгааргүй олон утга харгалзана. Жишээ нь, 30°, 150°, 390°, 510°, 750° г.м өнцгүүдэд синусын ганцхан утга харгалзана.
Эсрэг функцүүдийн үндсэн утгын мужууд:

  • arcsin x - -π/2 ≤ arcsin x ≤ +π/2
  • arccos x - 0 ≤ arccos x ≤ π
  • arctan x - -π/2 < arctan x <+π/2
  • arccot x - 0 < arccot x <π

Тригнометрийн эсрэг функцүүдийн дурын утгыг Arcsin x, Arccos x, Arctan x, Arccot x, үндсэн утгуудыг arcsin x, arccos x, arctan x, arccot x гэж тэмдэглэвэл эдгээр нь дараах харьцаагаар илэрхийлэгдэнэ.

k бүхэл тоо. k=0 үед үндсэн утга гарна.

Урвуу функцүүдын үндсэн харьцаанууд

Тригнометрийн эсрэг функцүүдын үндсэн харьцаанууд. Доорх томьёонуудад орсон бүх квадрат язгуурууд нь эерэг тоонууд.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2643 Бүртгүүлэх

Хувьсах хэмжигдхүүн нь туршилтын үр дүнд тодорхой магадлалтайгаар бодит утга авч байвал түүнийг санамсаргүй гэж нэрлэнэ. Хэрвээ сөрөг биш X хувьсагчийг pi магадлалтайгаар xi утгыг авах харгалзааг тодорхойлох

функц байвал X санамсаргүй хэмжигдхүүнийг дискрет гэдэг.

  Нээгдсэн тоо: 2250 Бүртгүүлэх

Геометрийн бодлогод гурвалжны төстэй чанарыг ашиглах нь ихээр тохиолдоно. Иймээс бид энэ хичээлээр гурвалжны төстэй чанарын талаар авч үзэх болно. Төстэй гурвалжин гэдэг ойлголт үнэндээ бол их энгийн. Ямар нэгэн зүйлийг томруулдаг шилээр харвал түүний бүх хэмжээг порпорцоор хадгалсан хэд дахин томруулсан дүрсийг бид хардаг. Өөрөөр хэлбэл анхдагч зүйлтэй төстэй зүйлийн дүрс гэсэн үг.
Өнцгүүд тэнцүү ба харгалзах талууд нь порпорционал гурвалжингуудыг төстэй гурвалжин гэдэг. Энд тэнцүү өнцгүүдийн эсрэг орших талыг харгалзах талууд гэж нэрлэнэ.

  Нээгдсэн тоо: 4212 Төлбөртэй

Өнцөг, тэдгээрийн төрлүүдийг маш сайн ойлгосон байхыг зөвлөе. Өнцгүүд хэмжээнээсээ хамааран тодорхой төрлүүдэд хуваагдахын дээр харилцан байрлалаараа төрлүүдэд хуваагдаж болохыг Өнцгийн төрлүүд хичээлд үзсэн. Энэ хичээлэээр бодлогод ихээр ашигладаг хамар болон босоо өнцгүүдийн талаар үзэх болно.

Өнцгийн төрөл, оноосон нэр, харагдах байдал, шинж, чанарыг мэдэхгүй бол бодлогын нөхцлийг ойлгож чадахгүйгээс үүдэн таахаас өөр арга үлдэхгүйд хүрнэ. Шалгалт шүүлэгийг тест хэлбэрээр авч байвал таагаад азаа үзэж болох ч ам эсхүл бичгээр шалгагдвал дуугүй зогсох, хоосон цаас өгөхөөс өөр замгүй. Иймээс сайтад тавигдсан онолын хичээлүүдийг үзэхийг зөвлөе.

  Нээгдсэн тоо: 791 Бүртгүүлэх

Адитгал гэдэг бол тэнцүүгийн тэмдгийн хоёр тал адил буюу тэнцүү идэрхийллээр илэрхийлэгдэх тэнцэл. Адитгалууд үсгэн ба тоон гэж хуваагдана.

Адитгал илэрхийлэл

Алгебрийн хоёр илэрхийлэл үсгүүдийн дурын тоон утганд ижил тоон хэмжээстэй байвал тэдгээрийг адитгал буюу тэнцүү гэж нэрлэдэг.

Жишээ нь x(5 + x) ба 5x + x2 илэрхийллүүд адитгал илэрхийллүүд юм. Учир нь илэрхийллүүд x -ийн дурын утганд бие биетэйгээ тэнцүү утгыг өгнө. Иймээс эдгээрийг адитгал буюу адил тэнцүү гэж нэрлэж болно.
Үүнээс гадна өөр хоорондоо тэнцүү тоон илэрхийллүүдийг адитгал гэж нэрлэж болно.
Жишээ нь 20 - 8 ба 10 + 2 илэрхийллүүдийг адитгал гэж болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 248

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 336

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 299

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 400

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 444

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 471

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 553

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 625

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 661

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1407

 

тэгшитгэл бод.

Нээгдсэн тоо : 1014

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1059