Тригнометрийн урвуу функцүүд

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

Бүх эсрэг функцүүд нь олон утгатай. Учир нь аргументын утга бүрт функцийн хязгааргүй олон утга харгалзана. Жишээ нь, 30°, 150°, 390°, 510°, 750° г.м өнцгүүдэд синусын ганцхан утга харгалзана.
Эсрэг функцүүдийн үндсэн утгын мужууд:

  • arcsin x - -π/2 ≤ arcsin x ≤ +π/2
  • arccos x - 0 ≤ arccos x ≤ π
  • arctan x - -π/2 < arctan x <+π/2
  • arccot x - 0 < arccot x <π

Тригнометрийн эсрэг функцүүдийн дурын утгыг Arcsin x, Arccos x, Arctan x, Arccot x, үндсэн утгуудыг arcsin x, arccos x, arctan x, arccot x гэж тэмдэглэвэл эдгээр нь дараах харьцаагаар илэрхийлэгдэнэ.

k бүхэл тоо. k=0 үед үндсэн утга гарна.

Урвуу функцүүдын үндсэн харьцаанууд

Тригнометрийн эсрэг функцүүдын үндсэн харьцаанууд. Доорх томьёонуудад орсон бүх квадрат язгуурууд нь эерэг тоонууд.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4484 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

  Нээгдсэн тоо: 9079 Төлбөртэй

Үржвэрт задлах

Олон гишүүнт бүр нь үржвэрт задардаггүй. Гэхдээ үржвэрт задлах боломжтой хэдэн тохиолдол байдаг.

  • Олон гишүүнтийн бүх гишүүд нь ижил үржигдхүүнийг агуулж байвал түүнийг хаалтны гадна гаргаж болно.
  • Олон гишүүнтийн гишүүдийг хэсэгчлэн хаалтанд аваад эндээс хаалт бүрд ерөнхий илэрхийлэл олж энэ илэрхийллийг ерөнхий үржигдхүүн байдлаар хаалтаас гаргахад хаалтанд үлдсэн хэсэг нь ерөнхий үржигдхүүн байдалд орж болно. Тэгвэл энэ илэрхийллийг хаалтаас гаргах замаар олон гишүүнтийг үржвэр болгон задална. Жишээ

  • Олон гишүүнтийг үржвэрт задлахдаа хааяа харилцан устгагдах гишүүдийг нэмэх аргыг хэрэглэнэ.Жишээ

  • Үржүүлэхийн хураангуй томьёог ашиглана.

  Нээгдсэн тоо: 3964 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

  Нээгдсэн тоо: 4398 Нийтийн

Шугам гэдэг нь бие биетэйгээ дараалан байрласан цэгүүдийн олонлогоор үүсэх геометрийн дүрс.
Ямар ч шугамыг тодорхой замаар шилжиж буй цэгийн хөдөлгөөний мөр гэж үзэж болно. Жишээ нь цаасан дээр харандаагаар дарвал түүний бал цаасан дээр цэг буюу мөрийг үүсгэнэ. Харандааг цааш цаасан дээгүүр хөдөлгөвөл хөдөлгөөний замаар бал бие биетэйгээ дараалан байрлах цэгүүдийн олонлогийг үүсгэснээр шугам зурагдана.
Геометрийн шугамд өргөн гэсэн ойлголт байдаггүй гэдгийг тогтоон аваарай.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 239

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 331

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 292

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 391

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 434

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 463

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 534

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 614

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 643

 
Энэ долоо хоногт

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1093

 

илэрхийллийн x=3 утгыг ол.

Нээгдсэн тоо : 504

 

16 см суурьтай, 10 см хажуу талтай адил хажуут гурвалжин өгөгджээ. Гурвалжинд багтсан болон гурвалжинг багтаасан тойргуудын радиус болон тойргуудын төв хоорондын зайны нийлбэрийг ол.

Нээгдсэн тоо : 413