Тригнометрийн урвуу функцүүд

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

Бүх эсрэг функцүүд нь олон утгатай. Учир нь аргументын утга бүрт функцийн хязгааргүй олон утга харгалзана. Жишээ нь, 30°, 150°, 390°, 510°, 750° г.м өнцгүүдэд синусын ганцхан утга харгалзана.
Эсрэг функцүүдийн үндсэн утгын мужууд:

  • arcsin x - -π/2 ≤ arcsin x ≤ +π/2
  • arccos x - 0 ≤ arccos x ≤ π
  • arctan x - -π/2 < arctan x <+π/2
  • arccot x - 0 < arccot x <π

Тригнометрийн эсрэг функцүүдийн дурын утгыг Arcsin x, Arccos x, Arctan x, Arccot x, үндсэн утгуудыг arcsin x, arccos x, arctan x, arccot x гэж тэмдэглэвэл эдгээр нь дараах харьцаагаар илэрхийлэгдэнэ.

k бүхэл тоо. k=0 үед үндсэн утга гарна.

Урвуу функцүүдын үндсэн харьцаанууд

Тригнометрийн эсрэг функцүүдын үндсэн харьцаанууд. Доорх томьёонуудад орсон бүх квадрат язгуурууд нь эерэг тоонууд.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3154 Бүртгүүлэх

Тригнометрийн илэрхийллийг хялбарчлах аргууд, тэдгээрт ашиглах томьёонуудын талаарх хичээлээ үргэлжлүүлье. Тригнометрийн илэрхийллийг хялбарчлах арга техникийг сураагүй бол тригнометрийн тэгшитгэл, тэнцэтгэл бишийг бодох тухай яриад ч хэрэггүй. Тригнометр сэдэв нилээд олон тооны их төстэй хэлбэрийн томьёонуудтай байдаг нь тэдгээрийг цээжлэх, ашиглахад хүндрэлтэй байдал үүсгэх талтай.

  Нээгдсэн тоо: 1691 Төлбөртэй

Математик ямар хэрэгтэй талаар хүмүүс олон янзаар ярьдаг. Зарим хүмүүс математикийн хэрэглээг зөвхөн 4 аргын тооны хүрээнд хардаг боловч өөрөө математикийн шинжлэх ухааны ололт дээр суурилан бий болсон техник хэрэгслүүдийг угаасаа байсан мэтээр хэрэглэж байдаг. Гэтэл зарим нэг хэсэг нь математикгүйгээр болоод л ирсэн гэсэн зүйлийг ч ярьж байдаг. Энэ бол хүмүүсийн ойлголтын өнцгүүд. Харин сайн сурдаг сурагчид бүгд математиктаа бусдаасаа илүү байдагийг бүгд мэднэ. Яагаад ийм зүй тогтол байдагт өөрийн бодлыг хэлье. Зарим хичээлд муу байж болох ч математикт муу байж болохгүй. Математикт сайн бол бусад хичээлд муу байх үндэсгүй гэдгийг баттай хэлэх байна. Иймээс хичээл сурлагадаа сайжран, амжилтанд хүрье гэвэл математикийн хичээлээ сайн үзэн ойлгоорой. Тэгвэл бусад хичээлүүдэд аяндаа сайн болоод ирнэ. Туршаад үзээрэй.

Энэ удаад тойрогт багтсан өнцгийн талаар авч үзье. Математикийг зөвхөн тоо бодох хүрээнд ердөө харж болохгүй. Онолын мэдлэгт суурилан асуудлын шийдлийг олдог юм шүү.

  Нээгдсэн тоо: 2006 Төлбөртэй

Модултай тэгшитгэлийг бодох I хичээлд модул гэж юу болох, үндсэн томьёоны талаар авч үзсэн. Жишээ болгон энгийн тэгшитгэүүдийг бодсноор модултай тэгшитгэлийг бодох алгоритм байж болох үндэслэлийг гарган ирсэн. Тэгвэл энэ хичээлээр модултай тэгшитгэлүүдийн төрлүүд тэдгээрийг хэрхэн бодох аргачлалд суралцая. Модул ухагдхууныг хүнд гэсэн ойлголтоос болоод сурагчид түүнийг судлан суралцахдаа хойрго хандах явдал бий. Хичээлийн материалыг ойлгохгүй бол дахин үзээд ойлгон авахыг хичээгээрэй. Таныг хичээлийг хэдэн удаа үзсэнг хэн ч мэдэхгүй ямарч зэмлэл, хариуцлага хүлээлгэхгүй, цаг хугацаанд ч шахагдахгүй байдал нь интернет сургалтын давуу тал шүү.

  Нээгдсэн тоо: 572 Төлбөртэй

Математикийн бүх илэрхийллүүд хамгийн сүүлд хийгдэх үйлдлээрээ нэрлэгддэг. Үүнийг сайн тогтоон аваарай. Учир нь сурагчид илэрхийллийг хараад a дээр нэмэх b хасах нь c үржих нь d гэх мэтээр унших гээд байх нь элбэг. Энэ нь таны алгебрийн анхан шатны мэдлэггүй гэж үзэхэд хүргэх том асуудал болохыг сануулъя.

Иймээс хичээлээр илэрхийллийг хэрхэн зөв уншихыг сурцгаая.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 244

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 332

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 296

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 394

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 438

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 464

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 540

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 618

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 651

 
Энэ долоо хоногт

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1093

 

илэрхийллийн x=3 утгыг ол.

Нээгдсэн тоо : 506

 

16 см суурьтай, 10 см хажуу талтай адил хажуут гурвалжин өгөгджээ. Гурвалжинд багтсан болон гурвалжинг багтаасан тойргуудын радиус болон тойргуудын төв хоорондын зайны нийлбэрийг ол.

Нээгдсэн тоо : 415