Тригнометрийн урвуу функцүүд

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

Бүх эсрэг функцүүд нь олон утгатай. Учир нь аргументын утга бүрт функцийн хязгааргүй олон утга харгалзана. Жишээ нь, 30°, 150°, 390°, 510°, 750° г.м өнцгүүдэд синусын ганцхан утга харгалзана.
Эсрэг функцүүдийн үндсэн утгын мужууд:

  • arcsin x - -π/2 ≤ arcsin x ≤ +π/2
  • arccos x - 0 ≤ arccos x ≤ π
  • arctan x - -π/2 < arctan x <+π/2
  • arccot x - 0 < arccot x <π

Тригнометрийн эсрэг функцүүдийн дурын утгыг Arcsin x, Arccos x, Arctan x, Arccot x, үндсэн утгуудыг arcsin x, arccos x, arctan x, arccot x гэж тэмдэглэвэл эдгээр нь дараах харьцаагаар илэрхийлэгдэнэ.

k бүхэл тоо. k=0 үед үндсэн утга гарна.

Урвуу функцүүдын үндсэн харьцаанууд

Тригнометрийн эсрэг функцүүдын үндсэн харьцаанууд. Доорх томьёонуудад орсон бүх квадрат язгуурууд нь эерэг тоонууд.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1000 Бүртгүүлэх

Тоон завсар гэдэг нь координатийн шулуунд дүрсэлж болох тоон ологлог юм. Тоон завсарт цацраг, хэрчим, интервал, хагас интервалууд орно. Тоон олонлогуудыг функцийн тодорхойлогдох болон утгын муж, тэнцэлтгэл бишийн шийдүүд, тэнцэтгэл биш зэрэгт өргөн ашигладаг тул тэдгээрийн хэлбэр, тэмдэглэгээг бүрэн ойлгон мэдсэн байх хэрэгтэй.

  Нээгдсэн тоо: 298 Бүртгүүлэх

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар өмнөх хичээлүүдэд үзээд байгаа.

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл.

Тодорхойлолтыг ойлгох үүднээс дараах жишээг авч үзье.
Зуслангийн хашаандаа нэг эгнээндээ 4 ширхэгээр 3 эгнээ гацуур суулгажээ. Зуслангийн хашаанд нийт хэдэн гацуур суулгасан бэ? Бодлогын нөхцлийг зургаар дүрсэлбэл

arif05_01

байна.

  Нээгдсэн тоо: 3089 Төлбөртэй

Хичээлээр бид тригнометрийн тэгшитгэлүүдийн үндсэн төрлүүд тэдгээрийг бодох аргачлалуудын талаар үзнэ. Сэдэв нь элсэлтийн шалгалтанд оролцогчдод хамгийн төвөгтэйд тооцогдох нэгэн. Элсэлтийн ерөнхий шалгалтанд тригнометрийн тэгшитгэл орж ирэх нь гарцаагүй. Сурагчид энэ сэдвийг сайн ойлгоогүйгээс болж ийм төрлийн бодлогоос оноо алдах тохиолдол маш элбэг. Иймээс тригнометрийн тэгшитгэлүүдийг бодож сурах хэрэгтэй. Хичээлд үзэх зарим нэгэн (жишээ нь орлуулах, үржигдхүүнд задлах) аргууд бол математикийн бусад сэдвүүдэд ашигладаг ерөнхий универсал аргууд болно. Бусад нь зөвхөн тригнометрт хэрэглэдэг аргууд байгаа.

  Нээгдсэн тоо: 4561 Бүртгүүлэх

Өнцөг гэдэг нь нэг цэгээс гарсан хоёр цацрагаар үүсэх геометрийн дүрс юм. Өөр хэлбэл ерөнхий эхлэлтэй хоёр цацрагийг өнцөг гэнэ. Өнцгийн бүрдүүлж буй цацрагуудыг өнцгийн талууд харин ерөнхий эхлэлийг өнцгийн орой гэдэг.

Тодорхойлолтыг ойлгохын тулд цацраг ухагдхуун -ы хичээлийг үзээрэй.

Жич: Хавтгайн геометрийн үндсэн ухагдхууныг ойлговол геометрийн бодлогыг бодоход хөнгөн. Иймээс Хавтгайн геометр багц хичээлүүдийг үзэхийг зөвлөе. Хичээлийг ойлголт бүрээр жижиг хэмжээтэй бэлтгэсэн тул судлахад хүндрэлгүй. Үндсэн ухагдхуунуудыг шууд цээжлэх гэж зүтгэлгүй бодлого бодохдоо тэдгээрийг ашиглан мартсан үедээ дахин эргэн харах байдлаар явбал аяндаа илүү сайн ойлгон тогтоон авдаг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 293

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 370

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 435

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 484

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 508

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 601

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 694

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 731

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1136

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 752

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 822