Гурвалжны үндсэн харьцаанууд

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

Синусын теорем

Тангенсын теорем

Талбайн томьёо

Героний томьёо

Багтаасан ба багтсан тойргийн радиус

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 7956 Төлбөртэй

Хавтгай буюу огторгуйд байрлах хоёр цэгийг холбосон чиглэл бүхий хэрчмийг вектор гэнэ. Векторыг голдуу жижиг үсэг эсвэл эхлэл төгсгөлийн цэгүүдээр тэмдэглэж дээр нь зураас тавьдаг.
Жишээ нь A цэгээс B цэг рүү чиглэсэн векторыг эсвэл гэж тэмдэглэнэ.
векторуудыг эсрэг вектор гэнэ. Тэгвэл болно.
Эхлэл төгсгөлийн цэг нь давхцаж байгаа векторыг тэг вектор гэдэг бөгөөд 0 эсвэл гэж тэмдэглэнэ.
Векторыг үзүүлж байгаа AB хэрчмийн уртыг векторын урт /модуль/ /тэмдэглэгээ |a| / гэнэ.
Хэрвээ векторуудын чиглэл заасан хэрчмүүд паралел шулуун дээр байвал тэдгээрийг коллинар вектор гэдэг. a, b векторуудыг коллинар гэдгийг a||b гэж тэмдэглэнэ.
Гурав ба түүнээс дээш векторууд нэг хавтгайд оршиж байвал тэдгээрийг комплинар вектор гэнэ.

  Нээгдсэн тоо: 9610 Төлбөртэй

Элсэлтийн ерөнхий шалгалтын материалд вектортой холбоотой бодлогууд орж ирэх нь элбэг байдгийн дээр геометрийн зарим бодлогуудыг векторын үйлдлүүдийг ашиглан их амархан шийдэх боломжтой. Иймээс энэ хичээлээр вектор, координатын суурь бодлогууд болох

  • Векторын координатыг түүний эхлэл ба төгсгөлийн координатаар хэрхэн олох
  • Координатууд нь өгөгдсөн үед векторын уртыг хэрхэн олох
  • Хоёр векторын нийлбэр, ялгавар векторын координатыг хэрхэн олох
  • Хэрчмийн дундажийн координатыг хэрхэн олох
  • Векторуудын скаляр үржвэр гэж юу болох
  • Вектор хоорондын өнцгийг хэрхэн олох

талаар авч үзэх юм. Эдгээр бодлогуудыг бодож сурсан байхад ЕБС-ийн хөтөлбөрт багтах вектортой холбоотой бүхий л бодлогыг шийдэх чадвартай болно. Огторгуй дахь вектор координатын үйлдлүүд хавтгайн дүрэмтэй яг ижлээр хийгддэг. Энд зөвхөн гуравдагч координат л нэмэгдэн орж ирдэг.

  Нээгдсэн тоо: 5131 Бүртгүүлэх

Энэ хэсэгт бид хавтгай дүрсийн талбайг олоход өргөн хэрэглэдэг томьёонуудыг авч үзнэ.
Квадрат /Зур. 58/ a - тал , d - диагнал.

Тэгш өнцөгт /Зур. 59/ a, b - талууд.

  Нээгдсэн тоо: 2596 Нийтийн

Бүхэл тоо гэдэг нь бутархай хэсэггүй эерэг ба сөрөг тоонууд болон тэг тоо юм. 0 нь эерэг ч биш сөрөг ч биш бүхэл тоо. Иймээс тэгийн өмнө ямар нэгэн тэмдэг тавих нь утга илэрхийлэхгүй +0, -0 бичлэг 0 бичлэгтэй ижил.  

Эерэг ба сөрөг тоонууд

Тоолол нь хоёр эсрэг чиглэлд хийгддэг хэмжээсүүд байдаг. Жишээ нь дулааны хэм буюу температурийн тооллыг хоёр эсрэг чиглэлд хийдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 254

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 338

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 306

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 403

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 450

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 476

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 559

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 634

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 671

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1414

 

тэгшитгэл бод.

Нээгдсэн тоо : 1020

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1064