Функцын гүдгэр, хотгор ба муруйлтын цэг

Хэрвээ f(x) функцын уламжлал нь x0 цэгт дифференциалчлагдаж байвал түүнийг f(x) функцын x0 цэг дээрх хоёрдугаар эрэмбийн уламжлал / гэж тэмдэглэнэ./ гэнэ.

  1. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн доор байрлаж байвал f(x) функцыг (a,b) интервалд гүдгэр гэнэ.
  2. Хэрвээ функцын график нь дурын цэгт y=f(x) функцын графикийн муруйд татсан шүргэгчийн дээр байрлаж байвал f(x) функцыг (a,b) интервалд хотгор гэнэ.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4257 Бүртгүүлэх

Хэсэгчлэн интегралчлах.

Хэрвээ u(x) , v(x) функцууд нь тасралтгүй нэгдүгээр эрэмбийн уламжлалтай, гэсэн интегралтай байвал гэсэн интеграл байхаас гадна тэнцэл биелж байна. Хураангуй бичлэг нь болно.
Хэсэгчлэн интегралчлах ба үржвэрийн дифференциалууд нь харилцан эсрэг үйлдлүүд гэдгийг сануулъя.

  Нээгдсэн тоо: 4098 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

  Нээгдсэн тоо: 2020 Төлбөртэй

Гурвалжингууд өөр хоорондоо өнцгийн шинж, талуудынхаа төрлөөр ялгагдах бөгөөд тус бүрдээ оноосон нэрүүдтэй байдаг. Геометрийн бодлогуудад гурвалжинг голдуу яг энэ нэрээр өгдөг тул эдгээрийг хэлбэр, дүрсээр нь сайн тогтоон авахыг зөвлөе.
Хавтгайн геометрийн дүрсийн тухай 7, 8 -р ангид үздэг тул сурагчид мартсанаас болоод бодлогын зургаас гурвалжингуудыг танихгүй байх тохиолдол гардаг. Хэрвээ гурвалжинг дүрсээр нь танихгүй бол тэдгээрийн шинж, чанарыг ашиглан бодлого бодох боломжгүй.

  Нээгдсэн тоо: 29072 Нийтийн

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 290

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 401

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 420

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 554

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1096

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304