Цацраг

Шулуун дээр орших дурын цэгээс нэг зүгт байрлах шулууны хэсгийг цацраг гэнэ. Эндээс цацрагийг хагас шулуун ч гэж бас нэрлэдэг. Цацраг эхлэл болон чиглэлтэй байдаг. Цацраг эхлэж буй цэгийг цацрагийн эхлэл, эхлэлийн цэг эсхүл цацрагийн орой гэж хэлнэ. Эндээс цацрагт эхлэл байхаас төгсгөл гэж байдаггүй.

Зурагт үзүүлсэн гурван цацраг ерөнхий эхлэлтэй ч өөр чиглэлтэй. Аль ч цацрагийг O цэгээс гарсан цацраг гэж нэрлэж болно.

Нэмэлт цацраг.

Шулуун дээрх дурын цэг тухайн шулууныг хоёр хагас шулуунд  хуваана. Өөрөөр хэлбэл хоёр хэсэг буюу цацрагт гэсэн үг. Эдгээр хэсэг бүрийг нөгөө цацрагийн хувьд нэмэлт цацраг гэж нэрлэдэг.

Эндээс нэг шулуун дээр орших, ерөнхий эхлэлтэй, эсрэг чиглэлтэй цацрагуудыг нэмэлт цацрагууд гэсэн тодорхойлолт гарч ирнэ.  

Цацрагуудын тэмдэглэгээ.

Цацрагийг нэг жижиг латин үсгээр тэмдэглэнэ.

Жишээ нь зурагт үзүүлсэн цацрагтйг m цацраг гэж тэмдэгдэж болохын дээр цацраг дээрх цэгүүдээр бас тэмдэглэж болно. Жишээ нь AB эсхүл AC гэж. Цацраг дээрх хоёр цэгээр түүнийг тэмдэглэхдээ эхний цэг нь цацрагийн эхлэлийг заана. Зураг үзүүлсэн цацрагийг BC гэж тэмдэглэвэл B цэгээс эхлэх цацраг болох тул болохгүй. Эндээс ямар нэгэн бодлого, асуулт, материалд AB цацраг гэсэн байвал түүнийг A цэгээс эхлэлтэй цацраг дээр B цэг оршино гэж ойлгох хэрэгтэй.

Санамж: Аливаа зүйлийн анхдагч ухагдхуунууд энгийн болоод ойлгомжтой байдгаас сурагчид хөнгөн юм гэж үзэн анхаарахгүй орхисноос хоцрогдол үүсэн сүүлдээ тухайн хичээлээс зугтаах үндсэн шалтгаан болдог. Хичээлд тайлбарлаж буй ухагдхууныг сайтар ойлгон тогтоон авахуулахын тулд хичээлүүдийг аль болохоор богинохон байлгахыг хичээх болно. Геометрийн суурь ухагдхуунуудыг мэдэхгүйгээр цааш явахгүй гэдгийг сануулъя. Та цагаан толгойн үсгүүдийг бүгдийг тогтоогоогүй бол уншиж чадахгүйн адил ямарч хичээлийн үндсэн ойлголтыг мэдэхгүйгээр түүнийг сурна гэж байхгүй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6226 Нийтийн

Өгөгдсөн MN муруйн /Зур. 82/ дагуу AB шулуун өөрийн чиглэлийг хадгалан шилжихэд цилиндр гадаргуу үүснэ. MN муруйг чиглүүлэгч гэнэ. AB шулууны хөдөлгөөний үед үүсэх A’B’, A”B”, …  г.м  /Зур. 82/ шулуунуудыг цилиндр гадаргууг бүрдүүлэгч гэдэг.

  Нээгдсэн тоо: 2651 Нийтийн

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

  Нээгдсэн тоо: 2533 Төлбөртэй

Математикийн элсэлтийн шалгалтанд геометрийн байгуулалт хийх бодлого заавал орж ирдэг. Бодлогууд ихэнхдээ нөхөх хэсэгт ордог бөгөөд зургийг хир зөв гаргаснаас амжилт ихээхэн шалгаалах болно. Нөхөх хэсгийн бодлогын оноо өндөр байдаг. Геомтрийн байгуулалт дээр сурагчид ерөнхий дүрсээ зөв зурсан хэдий ч цаашхи байгуулалт ялангуяа огтлолыг хийхдээ ихээхэн хүндрэлтэй тулдаг. Иймд энэ хичээлээр байгуулалт хийхэд төвөгтэйд орох пирамидын огтлолыг хэрхэн байгуулахыг авч үзэх болно. Сайн зөв зурсан зургаас бодлогын хариуг хэмжээд олчих боломжтой шүү.
Пирамидын огтлолыг байгуулах аргын тодорхой жишээн дээр авч үзцгээе. Пирамидад паралель хавтгайнууд байдаггүй болохоор хавтгайн ирмэгтэй зүсэгч хавтгай огтлолцох шугамыг байгуулахдаа энэхүү ирмэг орших хавтгай дээрх хоёр цэгийг дайрсан шулууныг татах аргыг голдуу хэрэглэдэг.

  Нээгдсэн тоо: 5877 Төлбөртэй

ЭЕШ-нд магадлалтай холбоотой бодлого тогтмол ирсэн байдаг. Сэдэв нь шалгуулагчид нилээд асуудал үүсгэдэг нь магадлалын талаарх ойлголт дутуу байдагтай холбоотой. Сурах бичгүүд дээр магадлалын талаар ойлголтыг нэг бол маш хураангуй эсхүл хэтэрхий онолын талаас нь тайлбарласан байдаг нь сурагчид хүндрэл учруулдаг болов уу. Энэ хичээлээр магадлалын тухай ойлголтыг онолын бус энгийнээр тайлбарлах гээд оролдоё. За ингээд хичээлдээ орцгооё.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 65

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 119

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 126

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1168

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1088

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840