Квадратын дүрэм I

Урт хугацааны олон нүүдэлт тэмцлийн эцэст аль нэг тал нь нэг хүүний давуутай хүүний эндшпильд орох нь цөөнгүй байдаг. Ийм багахан хэмжээний материалын давуу тал ялалтанд хангалттай юу? гэсэн асуулт гарч ирнэ. Хүүний төгсгөлийг тоглох зарчим дүрмүүдийг сайтар судалж байж л энэхүү асуултын хариуг олох болно. Юуны өмнө хамгийн бага материалын давуу тал болох ноён ганц хүүтэйгээр ноёны эсрэг хэрхэн тоглохыг эзэмших хэрэгтэй. Онолоор хүчний ийм харьцаа бүхий байрлал 160 гаруй мянгаар тоологдоно. Ийм хязгааргүй далайд хэрхэн баримжаалах вэ? Үнэндээ бол үүний тулд энгийн 2-3 дүрмийг мэдэж байхад л хангалттай.

Эдгээрийн нэг нь олон тооны байрлалд тохирох квадратын дүрэм юм. Дүрмийг хүү ноёны тусламжгүйгээр бэрс гарах гэж оролдоход хэрэглэдэг. 1-р диаграмаар үзүүлсэн байрлалыг авч үзье.

Цагаан хүү алдарт a8 нүд рүү тэмүүлж байна. Хар ноён түүнийг барихыг хичээнэ. Эндээс хэн нь энэхүү уралдаанд түрүүлэх вэ? гэсэн асуулт гарч ирнэ.Туршлагагүй шатарчид энэхүү асуултанд би ийшээ, тэр тийшээ,  би ийшээ гэх мэтээр тоолж эхэлдэг. Ингэхдээ ийшээ-тийшээ гэсэн тоогоо алдан хэд дахих ч тохиолдол багагүй. Харин туршлагатай шатарчид эцсийн үр дүнг квадратын дүрмээр бараг шууд л тодорхойлдог. Энэхүү дүрмийг тодорхойлбол

Сул талын ноён хүүний квадратад эсвэл өөрийн нүүдэлээр энэхүү квадратад орж байвал хүүг барина.

Квадратыг сул талын ноён руу дотроо бодон дараах байдлаар үүсгэнэ. Квадратын талаар хүү бэрс гарах нүд хүртэлх зайг авна. Ингэхдээ хүү болон бэрс гарах нүд нь квадратын буланд байрлана. 1-р диаграмд a4 хүүний хувьд a4-a8-e8-e4 квадрат байна. (a4 - a8 хүртэлх 5 нүд a4 -өөс баруун тийш 5 нүд) Хүү a5 шилжвэл түүний квадрат a5-a8-d8-d5 гэх мэтээр багасна. Ийм квадратыг санаандаа төсөөлөх нь хүнд биш ажил ч түүнийг хураангуйлж болно. Квадратын диагналыг олон харахад хангалттай. (1-р диаграмд a4-e8 шугам болно.)

Квадратын дүрмийг мэдсэн болохоор 1-р диаграмын байрлалд хэрвээ хар эхэлж нүүх бол тэдний ноён хүүг гүйцэн устгаж чадна. Харин цагаан нүүхээр байсан бол хүү эсрэг ноёнд гүйцэгдэхгүй бэрс болсноор цагаан хожино гэдгийг шууд хэлж чадна. Дээрх баталгааг өөрсдөө хөлөг дээр туршин шалгаарай.

Анхны байрлалд байгаа хүү нүд алгасан нүүж болдогийг хүүний квадрат байгуулах үедээ тооцох хэрэгтэй. Жишээ нь 2-р диаграмд үзүүлсэн байрлалд b2 хүүний квадратыг байгуулахдаа b3 хүүнийхтэй ижлээр байгуулна.
2-р диаграмын байрлалд квадратын дүрмээр цагаан болон харын нүүдэлд үр дүн хэрхэн гарахыг өөрсдөө тодорхойлоорой.

Хөлөг дээрх бусад хүүнүүд нь дүрэмд өөрчлөлт оруулж болно. Жишээ нь 1-р диаграмын байрлалд d5 нүдэнд хар хүүг тавибал хүү өөрийн ноёны замд саад болно. 1... Нe4 2. a5 Нe5 (d5 дээрх хүүг тойрохын тулд цагаан хүүний квадратаас ноён гарч байна.) 3. a6 Нd6 4. a7 Нc7 5. a8Б гээд цагаан хожино.
3-р диаграмд өөр нэгэн жишээг үзүүллээ. 1. b4 Нf4 (Ноён хүүний квадратад орлоо. Гэхдээ) 2. b5 хар ноён e5 нүдэнд орох хэрэгтэй боловч цагаан хүү нүдийг хянаж байгаа тул орох боломжгүй. Эндээс b шугамын хүү бэрс гарах нь ойлгомжтой боллоо.
Заримдаа хөөж байгаа ноёнд өрсөлдөгч хэргээр саад бий болгодог. Жишээ нь 4-р диаграмын байрлалд a шугамын хүүг a8 нүд рүү хөдлөхөөс өмнө цагаан эсрэг ноёны замд хаалт тавьж өгч байна. 1. d5! (шууд 1. a4 гэж нүүвэл хүү баригдана гэдгийг шалгаарай) 1. ... ed 2. a4 Нe4 3. a5 цагаан хожино.

Хичээлийн төгсгөлд практик тохиолдсон хоёр жишээг харъя. 5,6 - р диаграм
5-р диаграмд 38. ... Б:f4+ 39. Н:f4 a4! 40. Нe4 b4 41. Н:d4 b:a3 42. Нc3 Нg5 43. d4 Н:g4 цагаан цугцвангд орон бууж өгсөн.
6-р диаграмд 35. ... Трh7?? 36. Трd8+ Нg7 37. Трd7+ Нg8 38. Тр:h7 Н:h7 39. Нc2! хар бууж өглөө. Цагаан ноён g хүүгийн квадратад орсон байхад түүний хар амидаа a хүүг гүйцэхгүй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 895 Төлбөртэй

Орчин цагт хаалттай гарааны ангилал 30-40 жилийн өмнөхтэй харьцуулбал ихээхэн өөрчлөгдсөн. Өмнө нь хаалттай гараанд цагаан эхний нүүдэлдээ ноёны хүүгээ хоёр нүдээр түлхээгүй бүх гарааг хамруулдаг байсан бол одоо зөвхөн цагаан эхний нүүдлээр бэрсний хүүгээ хоёр нүдээр түлхэн харин хар яг ижил хариу нүүдэл хийдэг гараануудыг хаалттай гэж нэрлэдэг болсон. Өөрөөр хэлбэл өнөө цагт төвд 1. d4 d5 гэсэн шууд хүүний тулалт хийгддэг бэрсний гамбитийн төрлийн эхлэлүүдийг хаалттай гараа гэж үздэг. Иймээс өмнө нь хаалттай гараанд оруулж байсан бусад гараанууд гараанд үүсэх хүүний бүтцийг үндэслэн хагас хаалттай, жигүүрийн гэсэн хоёр бүлэгт хуваагдсан.

Альбиний сөрөг гамбитийн үед цагаан оновчтой зөв тоглохгүй бол нилээд хүндрэлд ордог. Гараанд зөв тоглохгүй бол шатрын өрөгт хожил авна гэдэг тун эргэлзээтэй тул гарааны хичээлүүдийг сайтар судлан өөрийн зэвсэглэлдээ авахыг зөвлөе.

  Нээгдсэн тоо: 3144 Төлбөртэй

Энэ хичээлээр бид ноёны гамбитын хамгийн өргөн тархсан төрөл гэж болох Кизерицийн гамбитын хувилбартай танилцах болно. Кизерицийн гамбитыг практикт маш ихээр хэрэглэхийн дээр бүр их аваргуудын өрөгүүдэд ч тохиолддог. Хичээлээр бид ноёнгийн гамбитын үед цагаан тэнцвэртэй байдлын төлөө бүх хүчээрээ тэмцэх хэрэгтэй тохиолдолыг авч үзэх болно. Хэрвээ цагаан багахан хэмжээний алдаа гаргавал тэд их амархан хожигдолд хүрнэ. Учир нь орчин үеийн шатрын онолоор ноёнгийн гамбитад байдлыг тэнцвэржүүлэхийн тулд хар биш цагаан тоглох хэрэгтэй гэж үзэх болсон. Иймээс ноёнгийн гамбитыг уламжлалт өргүүдэд бага хэрэглэдэг болсон ч өрнөл их адармаатай байдаг учраас хурдан тоглолт, сонирхогчдын өрөгт мэдээжээр хэрэглэх боломжтой. Ингээд хичээлдээ орцгооё.

  Нээгдсэн тоо: 929 Нийтийн

Нээлттэй гараануудын нэг болох Латви гамбитийн талаар авч үзье.

Сайтад нийтлэгдэж буй хичээлүүдийг нэг дороос үзэх боломжийг нээх зорилгоор Багц хичээл хэсгийг нээсэн билээ. Энэ хэсгийн Нээлттэй гараанууд хичээлийн багцаас нээлттэй гараануудыг бүгдийг судлан суралцахыг зөвлөе.

  Нээгдсэн тоо: 1218 Нийтийн

А. Нимцовичийн "Миний систем" номны хүүний гинж бүлгийн ээлжит нийтлэлийг хүргэж байна. Хүүний гинжний талаар сайн ойлгон авах нь таны тоглолтын түвшинг эрс нэмэгдүүлэх болно гэдгийг тэмдэглэе. Энэ удаагийн сэдэв бол Нүүргүй хүүг хаах дүрэм хүүний гинжид шилжих. Хүүний гинжид солилцох маневрыг хэрэглэх.
Өрсөлдөгчийн хүүний урагшлалтыг зогсоосон ямар ч шатрыг хаагч гэж үзэх хэрэгтэйг бид мэднэ. Гэсэн хэдий ч Нимцович 1. e4 e6 2. d4 d5 3. e5 -ын дараа d4, e6 хүүнүүдийг ердийн хаагч шатрууд гэж үзэх хандлагатай гэсэн. Үүнийгээ хүмүүс хүүг хаагч шатар гэж харж дасаагүйтэй холбоотой гэжээ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 293

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 370

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 432

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 483

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 506

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 599

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 690

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 727

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1135

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 751

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 820