Квадратын дүрэм I

Урт хугацааны олон нүүдэлт тэмцлийн эцэст аль нэг тал нь нэг хүүний давуутай хүүний эндшпильд орох нь цөөнгүй байдаг. Ийм багахан хэмжээний материалын давуу тал ялалтанд хангалттай юу? гэсэн асуулт гарч ирнэ. Хүүний төгсгөлийг тоглох зарчим дүрмүүдийг сайтар судалж байж л энэхүү асуултын хариуг олох болно. Юуны өмнө хамгийн бага материалын давуу тал болох ноён ганц хүүтэйгээр ноёны эсрэг хэрхэн тоглохыг эзэмших хэрэгтэй. Онолоор хүчний ийм харьцаа бүхий байрлал 160 гаруй мянгаар тоологдоно. Ийм хязгааргүй далайд хэрхэн баримжаалах вэ? Үнэндээ бол үүний тулд энгийн 2-3 дүрмийг мэдэж байхад л хангалттай.

Эдгээрийн нэг нь олон тооны байрлалд тохирох квадратын дүрэм юм. Дүрмийг хүү ноёны тусламжгүйгээр бэрс гарах гэж оролдоход хэрэглэдэг. 1-р диаграмаар үзүүлсэн байрлалыг авч үзье.

Цагаан хүү алдарт a8 нүд рүү тэмүүлж байна. Хар ноён түүнийг барихыг хичээнэ. Эндээс хэн нь энэхүү уралдаанд түрүүлэх вэ? гэсэн асуулт гарч ирнэ.Туршлагагүй шатарчид энэхүү асуултанд би ийшээ, тэр тийшээ,  би ийшээ гэх мэтээр тоолж эхэлдэг. Ингэхдээ ийшээ-тийшээ гэсэн тоогоо алдан хэд дахих ч тохиолдол багагүй. Харин туршлагатай шатарчид эцсийн үр дүнг квадратын дүрмээр бараг шууд л тодорхойлдог. Энэхүү дүрмийг тодорхойлбол

Сул талын ноён хүүний квадратад эсвэл өөрийн нүүдэлээр энэхүү квадратад орж байвал хүүг барина.

Квадратыг сул талын ноён руу дотроо бодон дараах байдлаар үүсгэнэ. Квадратын талаар хүү бэрс гарах нүд хүртэлх зайг авна. Ингэхдээ хүү болон бэрс гарах нүд нь квадратын буланд байрлана. 1-р диаграмд a4 хүүний хувьд a4-a8-e8-e4 квадрат байна. (a4 - a8 хүртэлх 5 нүд a4 -өөс баруун тийш 5 нүд) Хүү a5 шилжвэл түүний квадрат a5-a8-d8-d5 гэх мэтээр багасна. Ийм квадратыг санаандаа төсөөлөх нь хүнд биш ажил ч түүнийг хураангуйлж болно. Квадратын диагналыг олон харахад хангалттай. (1-р диаграмд a4-e8 шугам болно.)

Квадратын дүрмийг мэдсэн болохоор 1-р диаграмын байрлалд хэрвээ хар эхэлж нүүх бол тэдний ноён хүүг гүйцэн устгаж чадна. Харин цагаан нүүхээр байсан бол хүү эсрэг ноёнд гүйцэгдэхгүй бэрс болсноор цагаан хожино гэдгийг шууд хэлж чадна. Дээрх баталгааг өөрсдөө хөлөг дээр туршин шалгаарай.

Анхны байрлалд байгаа хүү нүд алгасан нүүж болдогийг хүүний квадрат байгуулах үедээ тооцох хэрэгтэй. Жишээ нь 2-р диаграмд үзүүлсэн байрлалд b2 хүүний квадратыг байгуулахдаа b3 хүүнийхтэй ижлээр байгуулна.
2-р диаграмын байрлалд квадратын дүрмээр цагаан болон харын нүүдэлд үр дүн хэрхэн гарахыг өөрсдөө тодорхойлоорой.

Хөлөг дээрх бусад хүүнүүд нь дүрэмд өөрчлөлт оруулж болно. Жишээ нь 1-р диаграмын байрлалд d5 нүдэнд хар хүүг тавибал хүү өөрийн ноёны замд саад болно. 1... Нe4 2. a5 Нe5 (d5 дээрх хүүг тойрохын тулд цагаан хүүний квадратаас ноён гарч байна.) 3. a6 Нd6 4. a7 Нc7 5. a8Б гээд цагаан хожино.
3-р диаграмд өөр нэгэн жишээг үзүүллээ. 1. b4 Нf4 (Ноён хүүний квадратад орлоо. Гэхдээ) 2. b5 хар ноён e5 нүдэнд орох хэрэгтэй боловч цагаан хүү нүдийг хянаж байгаа тул орох боломжгүй. Эндээс b шугамын хүү бэрс гарах нь ойлгомжтой боллоо.
Заримдаа хөөж байгаа ноёнд өрсөлдөгч хэргээр саад бий болгодог. Жишээ нь 4-р диаграмын байрлалд a шугамын хүүг a8 нүд рүү хөдлөхөөс өмнө цагаан эсрэг ноёны замд хаалт тавьж өгч байна. 1. d5! (шууд 1. a4 гэж нүүвэл хүү баригдана гэдгийг шалгаарай) 1. ... ed 2. a4 Нe4 3. a5 цагаан хожино.

Хичээлийн төгсгөлд практик тохиолдсон хоёр жишээг харъя. 5,6 - р диаграм
5-р диаграмд 38. ... Б:f4+ 39. Н:f4 a4! 40. Нe4 b4 41. Н:d4 b:a3 42. Нc3 Нg5 43. d4 Н:g4 цагаан цугцвангд орон бууж өгсөн.
6-р диаграмд 35. ... Трh7?? 36. Трd8+ Нg7 37. Трd7+ Нg8 38. Тр:h7 Н:h7 39. Нc2! хар бууж өглөө. Цагаан ноён g хүүгийн квадратад орсон байхад түүний хар амидаа a хүүг гүйцэхгүй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 20712 Нийтийн

Хоёр хүн тоглож хорин хүн харна гэдэг шатрын тухай оньсого байдаг. Иймээс шатрыг голдуу хоёр хүн тоглодог. Зарим үед олон хүн өрсөлдөгч хоёрт зөвлөх байдлаар ч тоглох нь бий.  

Шатрын хөлөг

Шатар тоглогч хоёр хүний нэг нь цагаан шатраар (цагаанаар) нөгөө нь хар шатраар (хараар) тоглоно. Тоглоом нь тал бүр нь 8 нүд бүхий квадрат хавтгай дээр явагдах ба үүнийг шатрын хөлөг гэдэг. Эндээс шатрын хөлөг нь нүд гэж нэрлэгдэх 64 жижиг квадратаас бүтдэг. Нүднүүдийн хилийг тодорхой болгохын тулд тэдгээрийг гэгээлэг болон бараан өнгөөр сөөлжүүлэн будаж өгдөг. Гэгээлэг өнгөтэй нүдийг цагаан, бараан өнгийн нүдийг хар нүд гэж нэрлэнэ. Шатар эхлэн суралцагч юуны түрүүнд шатрын хөлөгийг сайтар судалсан байх хэрэгтэй.

  Нээгдсэн тоо: 2762 Нийтийн

Дараах сургалтын өргүүдийг тоглоорой. Тоглолтын нүүдлийн тэмдэглэгээ тайлбарыг сайн хараарай. Өргүүдэд гаргаж байгаа алдаануудыг сайн тогтоон авч өөрийн тоглолтонд гаргахгүй байхыг хичээгээрэй.

Цагаанаар: А - Хараар: Б

  Нээгдсэн тоо: 1015 Төлбөртэй

Францийн алдарт шатарчин Филидорийг (1726-1795) хүндэтгэн гараанд түүний нэрийг өгсөн. Филидорийн жигүүрийн хүүнүүдийн тухай онолоор 3. ... c6 нүүдлийг b8 моринд саад үүсгэдэг тул сул гэж үздэг. Харин f7-f5 түлхэлттэй холбоотой 2. ... d6 -г хүчтэй гэж зөвлөсөн ч гарааны онол, практикаар 3. ... f5 нүүдэл няцаагдсан байдаг. Гэсэн хэдий ч гараанд цаг хугацааны туршилтыг даван туулсан өөр үргэлжлэлийг олсон. Филидорийн хамгаалалтаар хар бат бэх ч шахагдсан сөрөг боломж үүсгэхэд амаргүй байрлалтай болдог. Иймээс орчин үеийн тэмцээнүүдэд гарааг ховор хэрэглэдэг. Хичээлээр Сокольскийн систеийг үзье.

[Event "Филидорийн хамгаалалт.Сокольскийн систем"] 1. e4 e5 2. Nf3 d6 3. d4 Nf6 {Нимцовичийн санаачилсан энэхүү нүүдлийн санаа нь e4 хүүд зөрөж довтлон ноёны жигүүрийн хөлөлгөөнд чухал цаг хожиход оршино.} 4. dxe5 {энэ нүүдлээр Сокольскийн боловсруулсан систем эхлэнэ.} (4. Nc3 Nbd7 {нүүдлүүдийн дараа тоглолт Хенемийн хувилбарт шилжинэ.}) 4... Nxe4 5. Nbd2 ({Илүү нарийн тэмцэлд} 5. Qd5 Nc5 6. Bg5 Qd7 (6... Be7 {гэвэл} 7. exd6! Qxd6 8. Nc3 c6 9. Qxd6 Bxd6 10. O-O-O Be7 11. Bc4! {хэдийгээр бэрсээ солилцсон ч цагаан аюултай санаачлагатай.}) 7. Nc3 Ne6 ({эсхүл} 7... c6 8. Qd2 d5 9. h4 {гээд цагаан илүү боломжтой.}) 8. O-O-O {хувилбар хүргэдэг.}) (5. c4 {гэвэл хамгийн сайн нв} c6!? {хариу.}) 5... Nc5 (5... Nxd2 6. Bxd2 Be7! 7. Bc3 O-O 8. Bd3 Nc6 9. Qe2 Nxe5 10. Nxe5 dxe5 11. O-O-O {гээд тайван тоглолтод хүргэнэ.}) 6. Nc4 d5 7. Bg5 ({цагаан сайн тоглолттой} 7. Ne3 Be6 8. c4! {хувилбар сонирхол татахаар.}) 7... Qd7 (7... Be7!? {хариулт сонирхолтой.} 8. Bxe7 Qxe7 9. Qxd5 ({илүү нь} 9. Ne3 c6 10. c4 dxc4 11. Bxc4 {гээд цагаан байрлал илүүтэй.}) 9... Be6 10. Qd2 Nc6 {-гийн дараа хар хүүний хангалттай төлөөстэй:}) 8. Ne3 c6 9. c4 {9. Тe2 дараа нь 10. O-O гэсэн ч сайн. Системийн эгзэгтэй байрлал. Витковский - Прочовни (1995) нарын өрөгт} 9... Ne4 {дараагаар} ({эсхүл} 9... dxc4 10. Bxc4 {гээд давуутай}) 10. Qb3 h6 (10... Nxg5!?) 11. Bf4 g5 12. Bg3 g4 13. e6! {цагаан тактикийн хатгаагаар давуу бататгасан.}Qd8 (13... fxe6!? 14. Nxg4 Bg7 15. Bd3!?) 14. exf7+ Kxf7 15. Ne5+ Ke8 16. O-O-O {гэж тоглосон байдаг.}

  Нээгдсэн тоо: 522 Төлбөртэй

Шатрын тоглолтод хар тал хэрэглэдэг олон төрлийн хуучин энэтхэг байгуулалт эртнээс орж ирсэн хэдий ч цаг хугацааны явцад зарим өөр гараануудын адилаар илүү темптэйгээр хуучин энэтхэг хамгаалалтаар цагаан тоглох санаа үүссэн. Өнөө цагт хуучин энэтхэг гараа гарааны давууд тэмүүлэхгүйгээр хэдийгээр нарийн ч тэнцүүхэн тоглолтыг хүссэн шатарчдын дунд ихээхэн өргөн дэлгэрсэн. Энэ удаад гарааны 2, 3 -р хувилбаруудыг орууллаа. Өмнөх хичээлд гарааны 1-р хувилбарыг нийтэлсэн болно.

[Event "Хуучин энэтхэг хамгаалалт. 2-р хэсэг."] 1. Nf3 d5 2. g3 Nf6 3. Bg2 Bf5 4. O-O (4. c4! {илүү хурц. хэрвээ} c6 {гэвэл} (4... dxc4 {-гийн дараа үүсэх гамбитад цагаан бэлэн байх хэрэгтэй.}) 5. cxd5 cxd5 6. Qb3 {-ын дараа тоглолт цагаанд ашигтай Ретигийн гараанд шилжинэ.}) 4... c6 ({цагаан 4. c4! нүүдлээс татгалзвал 4... c6 гэлгүйгээр шууд} 4... e6!? {тоглож болно. Плахетка - Юсупов (1982) нарын өрөгт} 5. d3 h6 6. Nbd2 Be7 7. Qe1 (7. e4!? {Спильманий санал болгосон хүүний сонирхолтой хаяа.}) 7... O-O 8. e4 Bh7 9. Qe2 c5! {темп хэмнэсэн.} 10. b3 Nc6 11. Bb2 c4! {хар илүү байрлалтай.}) 5. d3 Nbd7 6. Nbd2 e6 (6... h6 {гэж ихээр тоглодог. Смыслов - Эйве (1953) нарын өрөгт} 7. e4 dxe4 8. dxe4 Nxe4 9. Nd4 Nxd2 10. Bxd2 Bh7 11. Bc3 Qc7 12. Qf3 e5 13. Rfe1 {гээд аюултай санаачлагыг авсан.}) 7. Qe1 Be7 8. e4 dxe4 9. dxe4 (9. Nxe4 {юу ч өөрчлөхгүй.}) 9... Bg6 {гээд талууд харилцан боломжуудтай.}

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 292

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 401

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 423

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 554

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1099

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304