Иррационал тэнцэтгэл бишийг бодох

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

Математикийн бичлэгийг их сайн ойлгож сурах хэрэгтэй шүү. Жишээ нь иррационал тэнцэтгэл бишийн ерөнхий хэлбэрт f(x), g(x) гэх мэтийн бичлэг гараад ирэхээр айгаад сүрдээд байх юм байхгүй. Энэ бол зүгээр л хаалтан доторх хувьсагчаас хамаарсан ямар нэгэн функцыг зааж байгаа юм, Жишээлбэл x2, x3+2x2+3x-5, sinx гэх мэтээр. Ийм бичлэгүүдийг ерөнхий байдлаар f(x), g(x) гэх мэтээр бичиж байгаа юм.
Хэрвээ g(x) тогтмол байвал тэнцэтгэл биш маш энгийн болдог. Хичээлээр авч үзэх тэнцэтгэл бишүүдийн төрлүүд хэлбэр талаасаа их адилхан мэт боловч бодолтын аргачлал нь зарчмын зөрүүтэй байдгийг анхаарна уу.

хэлбэрийн тэнцэтгэл биш

Ийм төрлийн тэнцэтгэл бишүүд энгийн болоод ойлгомжтой. Тэнцэтгэл бишийн тэмдэг бага эсвэл бага буюу тэнцүү гэж байж болно. Дээрх тэнцэтгэл бишийн хувьд доорх гаргалгаа хүчинтэй.
Теорем.

хэлбэрийн ямарч иррационал тэнцэтгэл биш нь гэсэн тэнцэтгэл бишүүдийн системтэй эн чацуу.
Яагаад ийм системтэй эн чацуу болохыг авч үзвэл
- Анхдагч тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлсэн байгаа энэ тэнцэтгэл биш ойлгомжтой. Гэхдээ тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш байхад л эн чацуу чанарыг хадгалан квадрат дэвшүүлэх боломжтой. Хоёр тал нь сөрөг эсхүл өөр тэмдэгтэй тэнцэлгэл бишийг квадрат дэвшүүлэхэд анхдагч тэнцэтгэл биштэй эн чацуу эсхүл эн чацуу биш тэнцэтгэл биш гарах боломжтой. Үүнийг тоон тэнцэтгэл биш дээр шалган харуулъя. Жишээ нь –1 < 3 бол зөв тэнцэтгэл биш. Хоёр талыг квадрат дэвшүүлбэл 1 < 9 гэсэн бас зөв тэнцэтгэл биш гарна. Харин –4 < –1 гэсэн зөв тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлбэл 16 < 1 гэсэн буруу тэнцэтгэл биш болон хувирна. Эндээс үүдэн нөгөө хоёр тэнцэтгэл биш гарч байгаа юм.
- Язгуурын тодорхойлогдох муж. Зөвхөн эерэг тооноос арифметикийн квадрат язгуур авч болно.
- Язгуурын утгын муж. Тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлснээр бид сөрөг хэсгийг алга болгоно. Үүнээс үүдэн гадны шийд бий болох талтай. Энэ тэнцэтгэл биш нь тэдгээрийг хязгаарлах юм.

Сурагчид эхний тэнцэтгэл бишийг л нухаад нөгөө хоёрыг таг мартдагт л гол алдаа оршдог. Үр дүн нь буруу бодолт, оноо алдах явдал. Иррационал тэнцэтгэл биш нилээд төвөгтэй сэдэв учраас доорх жишээнүдийг сайн ойлгон авахыг хичээгээрэй.

Бодлого 5.041     Москвагийн Улсын их сургууль ЭШ
тэнцэтгэл бишийг бод.

Бодолт

Бодлого 5.042     Москвагийн Улсын их сургууль ЭШ
тэнцэтгэл бишийг бод.

Бодолт

Бодлого 5.043
тэнцэтгэл бишийг бод.

Бодолт

хэлбэрийн тэнцэтгэл биш

Дээрх тэнцэтгэл бишийн тодорхойлогдох муж нь f (x) ≥ 0. Энэхүү тодорхойлогдох мужийн ямар нэгэн x -ийн утганд g (x) < 0 байлаа гэе. x -ийн тухайн утганд тэнцэтгэл бишийн зүүн хэсэг тодорхойлогдон сөрөг биш утгатай байхад баруун хэсэг g (x) < 0 болж байгаа тул x -ийн эдгээр утгууд тэнцэл бишийн шийд болох нь илэрхий.
Тодорхойлогдох мужийн бусад утгуудад g (x) ≥ 0 тул тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш болох учраас тэдгээрийг квадрат зэрэг дэвшүүлж болно. Иймээс тэнцэтгэл биш нь гэсэн эн чацуу тэнцэтгэл бишийн системд шилжинэ. Сүүлийн системд f (x) ≥ 0 шаардлага ороогүйг тэмдэглэе. Учир нь f(x)>g2(x)≥ 0 биелэгдэж байгаа тул f (x) ≥ 0 шаардлага хэрэггүй.
Эндээс харахад ийм тэнцэтгэл бишийг бодоход хоёр систем үүсэх бөгөөд сүүлийн шийдийг гаргахдаа системийн шийдүүдийг давхцал бус нэгтгэлийг авах ёстой. Үүнийг сайн анхаарах хэрэгтэй. Жишээ авч үзье.

Бодлого 5.044
тэнцэтгэл бишийг бод.

Бодолт

хэлбэрийн тэнцэтгэл биш

Тэнцэтгэл бишийн тодорхойлогдох муж бол Тодорхойлогдох мужид тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш тул квадрат зэрэг дэвшүүлж болно. Ингэснээр гэсэн эн чацуу системд шилжинэ. Энд g(x)≥f(x)≥0 гэдгээс g(x)≥0 тул тэнцэтгэл бишийг системд оруулах шаардлагагүй.
Эндээс хэрэгтэй мөрдлөг гарч ирнэ.

Тэнцэтгэл бишийн тодорхойлогдох мужийг олсон гэж үзвэл бид шийдийг зөвхөн тодорхойлогдох мужаас л сонгоно. Тодорхойлогдох мужаас гадна шийл байхгүй гэдэг нь ойлгомжтой. Тэгвэл анхдагч тэнцэтгэл биш нь тэй эн чацуу байна. Харин тэнцэтгэл биштэй эн чацуу дээрх системийг тодорхойлогдох мужийн x -ийн хувьд хэлбэрээр илэрхийлж болно. Эндээс тодорхойлогдох мужид байх болно. Тэнцэтгэл бишийн тэмдэг байх тохиолдолд ч энэхүү гаргалгааг хэрэглэж болох нь ойлгомжтой. Тэгвэл ялгаварын тэмдэг ялгаварын тэмдэгтэй ижил байна гэсэн чухал дүгнэлтэнд хүрнэ. Эндээс тодорхойлогдох мужид байна гэсэн бас нэгэн ашигтай мөрдлөг гарч ирнэ.

Бодлого 5.045
тэнцэтгэл бишийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 8427 Бүртгүүлэх

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

  Нээгдсэн тоо: 1548 Нийтийн

Ямар нэгэн зүйл /обьект/ эсхүл хийгдэж буй үйлдлийн тоог мэдэхийн тулд тэдгээрийг тоолох хэрэгтэй. Тоолол гэдэг нь ямар нэгэн тоон үзүүлэлтийг тооцох үйлдэл эсхүл тооллогоор илэрхийлэгдэнэ. Тоололд орж буй тусдаа обьект бүр эсхүл тусдаа үйлдэл бүрийг нэгж гэнэ. Нэгж гэдэг нь тусдаа обьектын хийсвэрлэлийг илэрхийлэх тоо юм. Тоололын үр дүн буюу тоологдсон нэгжийн нийлбэрийг тоо гэж нэрлэнэ.

  Нээгдсэн тоо: 422 Бүртгүүлэх

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Байр сэлгэх

Үржигдхүүн болон үржигчийн байрыг солиход үржвэр өөрчлөгдөхгүй нь доорх зураг дээрх однуудын тоог гаргаж буй хоёр аргаас харагдана.

arif05_02_01

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл тул дээрх зураг дээрх однуудын нийт тоог 3·4 эсхүл 4·3 үржвэрээр олох боломжтой. Үржигдхүүн болон үржигчийн байрыг солих боломжтой тул тэдгээрийг үржигдхүүнүүд гэж ч бас нэрлэдэг.

  Нээгдсэн тоо: 6833 Бүртгүүлэх

Шулуун ба хавтгайн паралел байх шинжүүд

  • Хавтгайд үл орших шулуун нь хавтгай дээр байгаа ямар нэгэн шулуунтай паралел байвал энэ шулуун нь хавтгайтай паралел байна.
  • Хэрвээ шулуун ба хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

Хавтгайнууд паралел байх шинжүүд

  • Нэг хавтгай дээрх огтлолцсон хоёр шулуун нь нөгөө хавтгайн огтлолцсон хоёр шулуунтай паралел байвал шулуунуудыг агуулж байгаа хавтгайнууд паралел байна.
  • Хэрвээ хоёр хавтгай нь нэг шулуунтай хоёулаа перпендикуляр байвал тэдгээр нь хоорондоо паралел байна.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 158

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 231

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 195

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 312

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 340

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 346

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 425

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 435

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 502

 
Энэ долоо хоногт

функцийн уламжлалыг тооц.

Нээгдсэн тоо : 511

 

утгыг ол.

Нээгдсэн тоо : 305

 

prob04_103_01 ба prob04_103_02 векторууд перпендикуляр бол y -ийн утгыг ол.

Нээгдсэн тоо : 165