Иррационал тэнцэтгэл бишийг бодох

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

Математикийн бичлэгийг их сайн ойлгож сурах хэрэгтэй шүү. Жишээ нь иррационал тэнцэтгэл бишийн ерөнхий хэлбэрт f(x), g(x) гэх мэтийн бичлэг гараад ирэхээр айгаад сүрдээд байх юм байхгүй. Энэ бол зүгээр л хаалтан доторх хувьсагчаас хамаарсан ямар нэгэн функцыг зааж байгаа юм, Жишээлбэл x2, x3+2x2+3x-5, sinx гэх мэтээр. Ийм бичлэгүүдийг ерөнхий байдлаар f(x), g(x) гэх мэтээр бичиж байгаа юм.
Хэрвээ g(x) тогтмол байвал тэнцэтгэл биш маш энгийн болдог. Хичээлээр авч үзэх тэнцэтгэл бишүүдийн төрлүүд хэлбэр талаасаа их адилхан мэт боловч бодолтын аргачлал нь зарчмын зөрүүтэй байдгийг анхаарна уу.

хэлбэрийн тэнцэтгэл биш

Ийм төрлийн тэнцэтгэл бишүүд энгийн болоод ойлгомжтой. Тэнцэтгэл бишийн тэмдэг бага эсвэл бага буюу тэнцүү гэж байж болно. Дээрх тэнцэтгэл бишийн хувьд доорх гаргалгаа хүчинтэй.
Теорем.

хэлбэрийн ямарч иррационал тэнцэтгэл биш нь гэсэн тэнцэтгэл бишүүдийн системтэй эн чацуу.
Яагаад ийм системтэй эн чацуу болохыг авч үзвэл
- Анхдагч тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлсэн байгаа энэ тэнцэтгэл биш ойлгомжтой. Гэхдээ тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш байхад л эн чацуу чанарыг хадгалан квадрат дэвшүүлэх боломжтой. Хоёр тал нь сөрөг эсхүл өөр тэмдэгтэй тэнцэлгэл бишийг квадрат дэвшүүлэхэд анхдагч тэнцэтгэл биштэй эн чацуу эсхүл эн чацуу биш тэнцэтгэл биш гарах боломжтой. Үүнийг тоон тэнцэтгэл биш дээр шалган харуулъя. Жишээ нь –1 < 3 бол зөв тэнцэтгэл биш. Хоёр талыг квадрат дэвшүүлбэл 1 < 9 гэсэн бас зөв тэнцэтгэл биш гарна. Харин –4 < –1 гэсэн зөв тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлбэл 16 < 1 гэсэн буруу тэнцэтгэл биш болон хувирна. Эндээс үүдэн нөгөө хоёр тэнцэтгэл биш гарч байгаа юм.
- Язгуурын тодорхойлогдох муж. Зөвхөн эерэг тооноос арифметикийн квадрат язгуур авч болно.
- Язгуурын утгын муж. Тэнцэтгэл бишийн хоёр талыг квадрат зэрэг дэвшүүлснээр бид сөрөг хэсгийг алга болгоно. Үүнээс үүдэн гадны шийд бий болох талтай. Энэ тэнцэтгэл биш нь тэдгээрийг хязгаарлах юм.

Сурагчид эхний тэнцэтгэл бишийг л нухаад нөгөө хоёрыг таг мартдагт л гол алдаа оршдог. Үр дүн нь буруу бодолт, оноо алдах явдал. Иррационал тэнцэтгэл биш нилээд төвөгтэй сэдэв учраас доорх жишээнүдийг сайн ойлгон авахыг хичээгээрэй.

Бодлого 5.041     Москвагийн Улсын их сургууль ЭШ
тэнцэтгэл бишийг бод.

Бодолт

Бодлого 5.042     Москвагийн Улсын их сургууль ЭШ
тэнцэтгэл бишийг бод.

Бодолт

Бодлого 5.043
тэнцэтгэл бишийг бод.

Бодолт

хэлбэрийн тэнцэтгэл биш

Дээрх тэнцэтгэл бишийн тодорхойлогдох муж нь f (x) ≥ 0. Энэхүү тодорхойлогдох мужийн ямар нэгэн x -ийн утганд g (x) < 0 байлаа гэе. x -ийн тухайн утганд тэнцэтгэл бишийн зүүн хэсэг тодорхойлогдон сөрөг биш утгатай байхад баруун хэсэг g (x) < 0 болж байгаа тул x -ийн эдгээр утгууд тэнцэл бишийн шийд болох нь илэрхий.
Тодорхойлогдох мужийн бусад утгуудад g (x) ≥ 0 тул тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш болох учраас тэдгээрийг квадрат зэрэг дэвшүүлж болно. Иймээс тэнцэтгэл биш нь гэсэн эн чацуу тэнцэтгэл бишийн системд шилжинэ. Сүүлийн системд f (x) ≥ 0 шаардлага ороогүйг тэмдэглэе. Учир нь f(x)>g2(x)≥ 0 биелэгдэж байгаа тул f (x) ≥ 0 шаардлага хэрэггүй.
Эндээс харахад ийм тэнцэтгэл бишийг бодоход хоёр систем үүсэх бөгөөд сүүлийн шийдийг гаргахдаа системийн шийдүүдийг давхцал бус нэгтгэлийг авах ёстой. Үүнийг сайн анхаарах хэрэгтэй. Жишээ авч үзье.

Бодлого 5.044
тэнцэтгэл бишийг бод.

Бодолт

хэлбэрийн тэнцэтгэл биш

Тэнцэтгэл бишийн тодорхойлогдох муж бол Тодорхойлогдох мужид тэнцэтгэл бишийн хоёр тал хоёулаа сөрөг биш тул квадрат зэрэг дэвшүүлж болно. Ингэснээр гэсэн эн чацуу системд шилжинэ. Энд g(x)≥f(x)≥0 гэдгээс g(x)≥0 тул тэнцэтгэл бишийг системд оруулах шаардлагагүй.
Эндээс хэрэгтэй мөрдлөг гарч ирнэ.

Тэнцэтгэл бишийн тодорхойлогдох мужийг олсон гэж үзвэл бид шийдийг зөвхөн тодорхойлогдох мужаас л сонгоно. Тодорхойлогдох мужаас гадна шийл байхгүй гэдэг нь ойлгомжтой. Тэгвэл анхдагч тэнцэтгэл биш нь тэй эн чацуу байна. Харин тэнцэтгэл биштэй эн чацуу дээрх системийг тодорхойлогдох мужийн x -ийн хувьд хэлбэрээр илэрхийлж болно. Эндээс тодорхойлогдох мужид байх болно. Тэнцэтгэл бишийн тэмдэг байх тохиолдолд ч энэхүү гаргалгааг хэрэглэж болох нь ойлгомжтой. Тэгвэл ялгаварын тэмдэг ялгаварын тэмдэгтэй ижил байна гэсэн чухал дүгнэлтэнд хүрнэ. Эндээс тодорхойлогдох мужид байна гэсэн бас нэгэн ашигтай мөрдлөг гарч ирнэ.

Бодлого 5.045
тэнцэтгэл бишийг бод.

Бодолт

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1544 Төлбөртэй

Бутархай хэсэгт зарим тоонууд хязгааргүй давтагдсан бутархайнууд байдаг. Ийм бутархайнуудын бичлэг 0,666666...; 1,33333...; 0,6818181818... гэж харагдах бөгөөд эдгээрийг үет бутархай гэж нэрлэдэг. Хичээлээр ийм бутархайнууд хэрхэн үүсдэг тэдгээртэй яаж ажиллахыг үзэх юм.

Үет бутархай үүсэх.

1-ийг 3 хуваавал эхлээд тэгээр өгөөд нэг үлдэнэ. Үлдэгдэл дээр тэг нэмээд 3 -аар өгөөд дахиад 1 үлдэнэ. Дахин тэг нэмээд 3-аар өгөөд дахиад нэг үлдэнэ. Эндээс 1:3=0,33333... гэсэн бутархай үүснэ.

  Нээгдсэн тоо: 4197 Бүртгүүлэх

Уламжлал гэж юу болох, түүнийг хэрхэн олох, бодлогод яаж ашиглах зэрэг нь сурагчдад томоохон асуудал үүсгэдэг. Уламжлал нь математик анализын үндсэн ойлголтуудын нэг бөгөөд интегралын хамтаар мат анализд голлох байр суурийг эзэлдэг. Уламжлалыг сайн ойлгосноор их дээд сургуулийн дээд тооны хичээлүүдэд сайн сурах үндэс болохоос гадна элсэлтийн ерөнхий шалгалтын материалд хүндэд тооцогдох бодлогуудыг бодох суурь болно. Элсэлтийн шалгалтанд функцын өсөх буурах үеийг олох, хамгийн их болон бага утгыг тооцох, функцийн графикийн шүргэгчийг олох, функцийн уламжлалыг олох гэх мэтийн олон төрлийн бодлогуудыг уламжлал ашиглан бодоход хүрдэг. Иймд хичээлийн материалыг сайн ойлгон авснаар та элсэлтийн ерөнхий шалгалтанд дор хаяад 2-3 хүндхэнд тооцогдох бодлогыг амжилттай бодох боломжтой болох юм. Хичээлийг үзэж эхлэхийн өмнө Хязгаарыг ойлгох нь хичээлийг сайн үзээд бүрэн хэмжээнд ойлгосон байхыг чухалчлан зөвлөх байна. Учир нь уламжлал гэдэг бол хязгаар юм шүү дээ.

  Нээгдсэн тоо: 12323 Нийтийн

Дифференцал

Функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэнэ. 
/Зур. 2 / дээр дифференциалын геометр утгыг үзүүллээ. Энд df=CD

  Нээгдсэн тоо: 1621 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 87

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 119

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 128

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 146

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 142

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 207

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 147

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 144

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 151

 
Энэ долоо хоногт

илэрхийллийг хялбарчил.

Нээгдсэн тоо : 1587

 

Нээгдсэн тоо : 635

 

prob09_163_01Зурагт өгсөн ABC гурвалжны AN=9, BM=12 байх медианууд перпендикуляр ба O цэгт огтлолцох бол ONCM дөрвөн өнцөгтийн талбайг ол.

Нээгдсэн тоо : 71