Эерэг сөрөг тоонуудын үйлдлүүд

Абсалют хэмжээ /модул/

Модул гэдгийг сөрөг тооны хувьд « – » тэмдгийг « + » тэмдгээр солиход гарах эерэг тоо харин эерэг тоо болон тэгийн хувьд энэ тоо өрөө байна гэж ойлгоно. Тооны абсалют хэмжээ /модул/-ийг тэмдэглэхдээ тухайн тоог хоёр босоо зураасын дунд бичдэг.

Жишээ.
| -5 | = 5, | 7 | = 7, | 0 | = 0 г.м

Нэмэх

Ижил тэмдэгтэй хоёр тоог нэмэхдээ тэдгээрийн абсалют хэмжээг нэмээд гарсан нийлбэрт ерөнхий тэмдгийн нь тавина.

Жишээ.
( + 6 ) + ( + 5 ) = 11; ( - 6 ) + ( - 5 ) = - 11.

Өөр тэмдэгтэй хоёр тоог нэмэхдээ абсалют хэмжээ нь их тооноос абсалют хэмжээ нь бага тоог хасаад гарсан үр дүн нь абсалют хэмжээ нь их тооныхоо тэмдгийг авна.

Жишээ.
( - 6 ) + ( + 9 ) = 3; ( - 6 ) + ( + 3 ) = - 3.

Хасах

Хасах үйлдлийг хасагдагчийн тэмдгийг єєрчлєхгүй, хасагчийн тэмдгийг эсрэгээр өөрчлөөд нэмэх үйлдлээр солиж болно.

Жишээ.
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3.
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13.
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3.
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13.

Үржих

Хоёр тоог үржихдээ тэдгээрийн абсалют хэмжээг үржүүлнэ. Ингэхдээ үржвэр нь үржигдхүүнүүдийн тэмдэг нь ижил байвал « + » харин үржигдхүүнүүдийн тэмдэг нь єєр байвал « - » тэмдэгтэй байна. Үржвэрийн тэмдгийн дүрэм

+ · + = +
+ · – = –
– · + = –
– · – = +

Хоёр болон түүнээс олон тооны үржвэрийн тэмдгийг дараах байдлаар тодорхойлно. Сөрөг тэмдэгтэй үржигдхүүнүүдийн тоо нь тэгш байвал « + » сондгой байвал « - » тэмдэгтэй байна.

Жишээ.


Хуваах

Хоёр тоог хооронд хуваахдаа хуваагдагчийн абсалют хэмжээг хуваагчийн абсалют хэмжээнд хувааж ногдвор нь хуваагдагч, хуваагч хоёр ижил тэмдэгтэй байвал « + », өөр тэмдэгтэй байвал « - » тэмдэгтэй байна. Энд үржвэрийн тэмдгийн дүрэм адилхан үйлчилнэ.

+ · + = +
+ · – = –
– · + = –
– · – = +

Жишээ.
( - 12 ) : ( + 4 ) = - 3; ( - 6 ) : ( - 2 ) = + 3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2598 Бүртгүүлэх

Хувьсагч тригнометрийн функцэд агуулагдаж буй илэрхийллийг тригнометрийн илэрхийлэл гэдэг. Ийм төрлийн илэрхийллийг хувирган эмхэтгэл хийхэд тригнометрийн функцуудын чанар, тригнометрийн томьёонуудыг ашиглана. Тригнометрийн тэгшитгэл, тэнцэтгэл бишүүдийг бодохдоо эхлээд илэрхийлэлд хувиргалт хийн тэдгээрийг энгийн хэлбэрт шилжүүлэн боддог тул тригнометрийн илэрхийллийг хялбарчлах аргыг сайн эзэмшсэн байхад энэ сэдвийн бодлогуудыг онцын хүндрэлгүй шийднэ. Энэ хичээлээр тригнометрийн илэрхийллийг хувиргахад ашигладаг үндсэн томьёонуудыг хэрхэн хэрэглэхийг сурах болно.

  Нээгдсэн тоо: 8224 Бүртгүүлэх

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

  Нээгдсэн тоо: 16132 Бүртгүүлэх

Хамгийн их ерөнхий хуваагч

Хэд хэдэн тооны ерөнхий хуваагч гэдэг нь эдгээр тоонуудын бүгдийнх нь хуваагч байдаг тоог хэлдэг. Жишээ нь 36, 60, 42 гэсэн тоонууд нь 2, 3, 6 гэсэн ерөнхий хуваагчтай байна. Ерөнхий хуваагчдын дотроос хамгийн их хуваагчийг хамгийн их ерөнхий хуваагч буюу / ХИЕХ / гэдэг. Тэгвэл дээрх жишээнээс 6 бол 36, 60, 42 тоонуудын / ХИЕХ / юм.

Тоонуудын / ХИЕХ / -ийг олохын тулд:

  1. Тоо тус бүрийг анхны тоон үржвэрт задлана. Жишээ нь  360 = 2 · 2 · 2 · 3 · 3 · 5
  2. Бүх анхны тооны зэргийн үржвэрт оруулна. Жишээ нь 360 = 2 · 2 · 2 · 3 · 3 · 5 =2³ · 3² · 5¹
  3. Бүх тооны үржвэрт орсон ерөнхий хуваагчийг бичнэ
  4. Үржвэрүүдээс хамгийн бага зэрэгтэй хуваагчийн зэргийг авна
  5. Гарсан хуваагчийн зэргийг бүгдийг үржүүлнэ

  Нээгдсэн тоо: 20427 Нийтийн

Бага тооноос их тоог хасахад сөрөг тоо гарна.

Жишээ. 10-15=-5

5 ын тооны өмнө байгаа «-» тэмдэг нь уг тоог сөрөг тоо болохыг илтгэнэ.
Бүхэл сөрөг тоон цуваа нь төгсгөлгүй.

-1, -2, -3, -4, -5, …

Бага бутархай тооноос их бутархай тоог хасахад сөрөг бутархай тоо гарна.

Жишээ



Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 141

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 204

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 203

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 227

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 225

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 305

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 233

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 232

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 228

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1370

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1510

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1046