Эерэг сөрөг тоонуудын үйлдлүүд

Абсалют хэмжээ /модул/

Модул гэдгийг сөрөг тооны хувьд « – » тэмдгийг « + » тэмдгээр солиход гарах эерэг тоо харин эерэг тоо болон тэгийн хувьд энэ тоо өрөө байна гэж ойлгоно. Тооны абсалют хэмжээ /модул/-ийг тэмдэглэхдээ тухайн тоог хоёр босоо зураасын дунд бичдэг.

Жишээ.
| -5 | = 5, | 7 | = 7, | 0 | = 0 г.м

Нэмэх

Ижил тэмдэгтэй хоёр тоог нэмэхдээ тэдгээрийн абсалют хэмжээг нэмээд гарсан нийлбэрт ерөнхий тэмдгийн нь тавина.

Жишээ.
( + 6 ) + ( + 5 ) = 11; ( - 6 ) + ( - 5 ) = - 11.

Өөр тэмдэгтэй хоёр тоог нэмэхдээ абсалют хэмжээ нь их тооноос абсалют хэмжээ нь бага тоог хасаад гарсан үр дүн нь абсалют хэмжээ нь их тооныхоо тэмдгийг авна.

Жишээ.
( - 6 ) + ( + 9 ) = 3; ( - 6 ) + ( + 3 ) = - 3.

Хасах

Хасах үйлдлийг хасагдагчийн тэмдгийг єєрчлєхгүй, хасагчийн тэмдгийг эсрэгээр өөрчлөөд нэмэх үйлдлээр солиж болно.

Жишээ.
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3.
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13.
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3.
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13.

Үржих

Хоёр тоог үржихдээ тэдгээрийн абсалют хэмжээг үржүүлнэ. Ингэхдээ үржвэр нь үржигдхүүнүүдийн тэмдэг нь ижил байвал « + » харин үржигдхүүнүүдийн тэмдэг нь єєр байвал « - » тэмдэгтэй байна. Үржвэрийн тэмдгийн дүрэм

+ · + = +
+ · – = –
– · + = –
– · – = +

Хоёр болон түүнээс олон тооны үржвэрийн тэмдгийг дараах байдлаар тодорхойлно. Сөрөг тэмдэгтэй үржигдхүүнүүдийн тоо нь тэгш байвал « + » сондгой байвал « - » тэмдэгтэй байна.

Жишээ.


Хуваах

Хоёр тоог хооронд хуваахдаа хуваагдагчийн абсалют хэмжээг хуваагчийн абсалют хэмжээнд хувааж ногдвор нь хуваагдагч, хуваагч хоёр ижил тэмдэгтэй байвал « + », өөр тэмдэгтэй байвал « - » тэмдэгтэй байна. Энд үржвэрийн тэмдгийн дүрэм адилхан үйлчилнэ.

+ · + = +
+ · – = –
– · + = –
– · – = +

Жишээ.
( - 12 ) : ( + 4 ) = - 3; ( - 6 ) : ( - 2 ) = + 3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 344 Бүртгүүлэх

Нийлбэр хоёроос дээш бүрдүүлэгч буюу нэмэгдхүүнүүүдтэй бол тооцоог хялбар  болгох үүднээс тэдгээрийг бүлэглэх аргыг өргөнөөр ашигладаг. Энэ нь нэмэх үйлдлийн байр солих, нэгтгэн нэмэх дүрмүүдийг хослуулан хэрэглэж байгаа аргачлал болохоос шинэ дүрэм биш.
Бүрдүүлэгчдийг бүлэглэнэ гэдэг нь тэдгээрийг хаалт ашиглан нэгтгэх аргачлал юм. Аргачлалыг нийлбэрийн тооцоог энгийн болгох зорилгоор ашигладаг тул нэмэгдхүүнүүдийн байрлал голлон өөрчлөгдөнө.

  Нээгдсэн тоо: 4300 Төлбөртэй

Тригнометрийн хувиргалт, тэгшитгэл, тэнцэтгэл биш гээд тригнометрийн бодлогод хувиргалтын томьёонуудыг өргөнөөр ашигладаг. Эдгээр томьёонууд нилээд олон тооны дээр өөр хоорондоо их төстэй байдаг нь сурагчдыг төөрөгдөлд оруулах явдал ихээр гардаг. Томьёонуудыг цээжилнэ гэвэл нилээд хэцүү тэгээд ч алдах нь гарцаагүй. Энэ хичээлээр хувиргалтын томьёог цээжлэхгүйгээр хэрхэн зөв гаргах талаар авч үзэх болно. Сайн анхааралтай уншаад аргачлалыг тогтоон аваарай.
Хувиргалтын томьёонуудын талаар ярилцахаас өмнө зарим нэгэн ухагдхууны талаар тохиролцох хэрэгтэй. Тэгэхлээр f(x) - гэдгийг sinx, cosx, tgx, ctgx функцуудын аль нэг нь гэе. cof(x) -ээр f(x) функцын кофункцыг тэмдэглэе. Кофункц гэдэг нь синусын хувьд косинус, косинусын хувьд синус харин тангенсийн хувьд котангенс, котангенсийн хувьд тангенс гэсэн үг юм. Илүү ойлгомжтойгоор

  Нээгдсэн тоо: 4740 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

  Нээгдсэн тоо: 3881 Бүртгүүлэх

Тэгш өнцөгт гурвалжны талуудын харьцааг хурц өнцгийн тригнометрийн функцүүд гэдэг. / Зур. 2 /

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 191

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 271

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 232

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 339

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 373

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 393

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 460

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 512

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 549

 
Энэ долоо хоногт

функцийн тодорхойлогдох мужийг ол.

Нээгдсэн тоо : 966

 

g(x)=2x-3x2 нь f(x)=x2-x3 -ийн уламжлал бол -ийг ол.

Нээгдсэн тоо : 486

 

хязгаарыг ол.

Нээгдсэн тоо : 232