Эерэг сөрөг тоонуудын үйлдлүүд

Абсалют хэмжээ /модул/

Модул гэдгийг сөрөг тооны хувьд « – » тэмдгийг « + » тэмдгээр солиход гарах эерэг тоо харин эерэг тоо болон тэгийн хувьд энэ тоо өрөө байна гэж ойлгоно. Тооны абсалют хэмжээ /модул/-ийг тэмдэглэхдээ тухайн тоог хоёр босоо зураасын дунд бичдэг.

Жишээ.
| -5 | = 5, | 7 | = 7, | 0 | = 0 г.м

Нэмэх

Ижил тэмдэгтэй хоёр тоог нэмэхдээ тэдгээрийн абсалют хэмжээг нэмээд гарсан нийлбэрт ерөнхий тэмдгийн нь тавина.

Жишээ.
( + 6 ) + ( + 5 ) = 11; ( - 6 ) + ( - 5 ) = - 11.

Өөр тэмдэгтэй хоёр тоог нэмэхдээ абсалют хэмжээ нь их тооноос абсалют хэмжээ нь бага тоог хасаад гарсан үр дүн нь абсалют хэмжээ нь их тооныхоо тэмдгийг авна.

Жишээ.
( - 6 ) + ( + 9 ) = 3; ( - 6 ) + ( + 3 ) = - 3.

Хасах

Хасах үйлдлийг хасагдагчийн тэмдгийг єєрчлєхгүй, хасагчийн тэмдгийг эсрэгээр өөрчлөөд нэмэх үйлдлээр солиж болно.

Жишээ.
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3.
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13.
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3.
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13.

Үржих

Хоёр тоог үржихдээ тэдгээрийн абсалют хэмжээг үржүүлнэ. Ингэхдээ үржвэр нь үржигдхүүнүүдийн тэмдэг нь ижил байвал « + » харин үржигдхүүнүүдийн тэмдэг нь єєр байвал « - » тэмдэгтэй байна. Үржвэрийн тэмдгийн дүрэм

+ · + = +
+ · – = –
– · + = –
– · – = +

Хоёр болон түүнээс олон тооны үржвэрийн тэмдгийг дараах байдлаар тодорхойлно. Сөрөг тэмдэгтэй үржигдхүүнүүдийн тоо нь тэгш байвал « + » сондгой байвал « - » тэмдэгтэй байна.

Жишээ.


Хуваах

Хоёр тоог хооронд хуваахдаа хуваагдагчийн абсалют хэмжээг хуваагчийн абсалют хэмжээнд хувааж ногдвор нь хуваагдагч, хуваагч хоёр ижил тэмдэгтэй байвал « + », өөр тэмдэгтэй байвал « - » тэмдэгтэй байна. Энд үржвэрийн тэмдгийн дүрэм адилхан үйлчилнэ.

+ · + = +
+ · – = –
– · + = –
– · – = +

Жишээ.
( - 12 ) : ( + 4 ) = - 3; ( - 6 ) : ( - 2 ) = + 3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 438 Бүртгүүлэх

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа давтагдах хасалтаар илэрхийлж болно. Жишээ нь 62 -т хуваа гэдэг нь 62 хэдэн удаа агуулагдахыг тооцно гэсэн үг. Үүнийu 6-гаас 2-ыг давтан хасч

6 - 2 = 4
4 - 2 = 2
2 - 2 = 0

тодорхойлж болно. 6-гаас 2-ыг давтан 0 хүртэл хасахад 3 удаа хасалтыг хийсэн нь 62 гурван удаа /дахин/ агуулагдаж буйг илэрхийлнэ.

  Нээгдсэн тоо: 6436 Бүртгүүлэх

Вектор ба түүний үйлдлүүдийн талаар энэ хичээлээр авч үзье. Вектортой холбоотой бодлогууд дээр сурагчид будлих, алдаа гаргах нь элбэг байдаг. Ойлголт энгийн мэт боловч векторуудын нийлбэр, ялгавар, үржвэр зэргийг зөв ойлгохгүйгээр бодлого бодоход хүндрэл үүснэ. ЕБС-д энэ сэдвийн хичээлийг их өнгөцхөн үздэгээс сурагчид дутуу ойлгон улмаар бодлогод дээр дүрмүүдийг хэрэглэхдээ их сул байдаг. Иймээс вектор түүнтэй хийгдэх үйлдлүүдийг нэг мөр цэгцлэн тэдгээрийг бодлого бодоход ашиглаж сурахад хичээл зориулагдсан. Эхлээд ерөнхий ойлголтуудын талаар.

  Нээгдсэн тоо: 1551 Төлбөртэй

Гурвалжны төстэйн шинжүүдийг геометрийн ихэнх бодлогод өргөнөөр ашигладаг тул шинжүүдийг маш сайн ойлгон цээжээр мэддэг байх хэрэгтэй.
Төстэй гурвалжингууд гэдэг нь бүх өнцгүүд нь тэнцүү, нэг гурвалжны бүх талууд нөгөөгийнхөө төстэй талуудаас нэг ижил тоогоор урт эсхүл богино байх гурвалжингуудыг хэлнэ. Өөрөөр хэлбэл гурвалжингуудын бүх өнцгүүд тэнцүү ба төстэй талууд нь пропорционал бол тэдгээр нь төстэй гурвалжинууд.

  Нээгдсэн тоо: 4201 Төлбөртэй

ЕБС-ын ахлах ангид математик анализын эхлэл болох хязгаар, уламжлал, интеграл зэрэг сэдвүүдийг эхлэл байдлаар үздэг. Эдгээр сэдвүүдийг сайн ойлгох нь цаашид их сургуульд дээд математикийн хичээлүүдэд амжилттай суралцах үндсэн суурь болдог. Хэдийгээр сэдвүүдийг эхлэлийн хэмжээнд үздэг ч ерөнхий шалгалт дээр дээрх сэдвийг хамарсан бодлогууд тогтмол орж ирсэн байдаг. Сурагчид сэдвүүдийн талаар баттай суурь мэдлэг олж аваагүйн улмаас бодлогыг бодохдоо алдаа гарган оноо алдах үзэгдэл их түгээмэл харагддаг. Сэдвүүд ЕБС-ын математикийн хичээлийн агуулга дотроо арай хүндхэн хэсэгт орох ч утгыг нь зөв ойлгосон тохиолдолд тийм ч аймшигтай зүйлүүд биш. Энэ хичээлээр бид хязгаар гэж юу болох түүнийг хэрхэн ойлгохыг авч үзнэ. Хязгаарыг сайн ойлгосон байхад уламжлал, интегралыг ойлгоход амархан.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 259

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 342

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 309

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 406

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 452

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 481

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 565

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 641

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 676

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1418

 

тэгшитгэл бод.

Нээгдсэн тоо : 1021

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1067