Эерэг сөрөг тоонуудын үйлдлүүд

Абсалют хэмжээ /модул/

Модул гэдгийг сөрөг тооны хувьд « – » тэмдгийг « + » тэмдгээр солиход гарах эерэг тоо харин эерэг тоо болон тэгийн хувьд энэ тоо өрөө байна гэж ойлгоно. Тооны абсалют хэмжээ /модул/-ийг тэмдэглэхдээ тухайн тоог хоёр босоо зураасын дунд бичдэг.

Жишээ.
| -5 | = 5, | 7 | = 7, | 0 | = 0 г.м

Нэмэх

Ижил тэмдэгтэй хоёр тоог нэмэхдээ тэдгээрийн абсалют хэмжээг нэмээд гарсан нийлбэрт ерөнхий тэмдгийн нь тавина.

Жишээ.
( + 6 ) + ( + 5 ) = 11; ( - 6 ) + ( - 5 ) = - 11.

Өөр тэмдэгтэй хоёр тоог нэмэхдээ абсалют хэмжээ нь их тооноос абсалют хэмжээ нь бага тоог хасаад гарсан үр дүн нь абсалют хэмжээ нь их тооныхоо тэмдгийг авна.

Жишээ.
( - 6 ) + ( + 9 ) = 3; ( - 6 ) + ( + 3 ) = - 3.

Хасах

Хасах үйлдлийг хасагдагчийн тэмдгийг єєрчлєхгүй, хасагчийн тэмдгийг эсрэгээр өөрчлөөд нэмэх үйлдлээр солиж болно.

Жишээ.
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3.
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13.
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3.
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13.

Үржих

Хоёр тоог үржихдээ тэдгээрийн абсалют хэмжээг үржүүлнэ. Ингэхдээ үржвэр нь үржигдхүүнүүдийн тэмдэг нь ижил байвал « + » харин үржигдхүүнүүдийн тэмдэг нь єєр байвал « - » тэмдэгтэй байна. Үржвэрийн тэмдгийн дүрэм

+ · + = +
+ · – = –
– · + = –
– · – = +

Хоёр болон түүнээс олон тооны үржвэрийн тэмдгийг дараах байдлаар тодорхойлно. Сөрөг тэмдэгтэй үржигдхүүнүүдийн тоо нь тэгш байвал « + » сондгой байвал « - » тэмдэгтэй байна.

Жишээ.


Хуваах

Хоёр тоог хооронд хуваахдаа хуваагдагчийн абсалют хэмжээг хуваагчийн абсалют хэмжээнд хувааж ногдвор нь хуваагдагч, хуваагч хоёр ижил тэмдэгтэй байвал « + », өөр тэмдэгтэй байвал « - » тэмдэгтэй байна. Энд үржвэрийн тэмдгийн дүрэм адилхан үйлчилнэ.

+ · + = +
+ · – = –
– · + = –
– · – = +

Жишээ.
( - 12 ) : ( + 4 ) = - 3; ( - 6 ) : ( - 2 ) = + 3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 12739 Нийтийн

Дифференцал

Функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэнэ. 
/Зур. 2 / дээр дифференциалын геометр утгыг үзүүллээ. Энд df=CD

  Нээгдсэн тоо: 2604 Бүртгүүлэх

Олон функцыг /яв цав эсвэл ойролцоогоор / энгийн томьёогоор илэрхийлж болдог. Жишээлбэл, дугуйн талбай S, түүний радиусын r хоорондын хамаарал нь томьёогоор илэрхийлэгдэнэ; Хоёр хувьсагчийн функционал хамаарал хэсэгт авч үзсэн дээш шидэгдсэн биеийн хүрэх өндөр h, нийт хугацаа T  хоёрын хамаарал гэх мэт. Агаарын эсэргүүцэл, дэлхийн таталтын хүч өндрөөс хамаардаг зэргийг тооцоогүй учраас энэ нь ойролцоо томьёо юм. Функционал хамааралыг томьёогоор илэрхийлэх боломжгүй эсвэл томьёо нь тооцоо хийхэд тохиромж муутай байх тохиолдол бас байдаг. Ийм үед функцыг хүснэгт эсвэл графикаар үзүүлдэг.
Жишээ нь Усны буцлах температур T, агаарын даралт p хоёрын  функционал хамааралыг нэг томьёогоор илэрхийлж болохгүй боловч хүснэгтээр үзүүлж болно.

  Нээгдсэн тоо: 6327 Бүртгүүлэх

Стереометр нь огторгуйн дүрс ба биетийн шинж чанаруудыг судалдаг. Хавтгайн геометрт цэг, шулуун гэсэн үндсэн ойлголтууд байдаг шиг огторгуйн геометрийн үндсэн ойлголт нь шулуун ба хавтгай болно.

Огторгуйн геометрийн үндсэн аксиом - Нэг шулуун дээр үл орших огторгуйд байрлах гурван цэгийг дайруулан зөвхөн нэг л хавтгай байгуулж болно.

Нэг шулуун дээр орших гурван цэгийг дайруулан төгсгөлгүй олон / хавтгайн цацраг / хавтгайг байгуулж болно. Цацрагийн бүх хавтгайнууд дайрч өнгөрч байгаа шулууныг хавтгайн тэнхлэг гэдэг. Энэ шулуун ба түүн дээр байрлаагүй дурын цэг буюу шулууныг дайруулан зөвхөн нэг хавтгайг татаж болно. Хоёр шулууныг дайруулан хавтгайг дандаа татаж болдоггүй. Ийм шулуунуудыг зөрсөн шулуун гэнэ. Жишээ нь: Өрөөний нэг хананд татсан босоо шугам ба эсрэг хананд татсан хөндлөн шугамууд нь зөрсөн шугамууд болно.

  Нээгдсэн тоо: 7398 Бүртгүүлэх

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу un тоогоор соливол бид шинэ тоон цувааг гаргана

Энэ шинэ гарсан цувааг тоон дараалал гэдэг. un тоог тоон цувааны ерөнхий гишүүн гэнэ.
Тоон цувааны жишээнүүд

2, 4, 6, … , 2n, …;
1, 4, 9, 16, 25, … , n², …;
1, 1/2, 1/3, 1/5, … , 1/n, …;

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 158

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 231

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 195

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 312

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 340

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 346

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 424

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 435

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 501

 
Энэ долоо хоногт

функцийн уламжлалыг тооц.

Нээгдсэн тоо : 511

 

утгыг ол.

Нээгдсэн тоо : 305

 

prob04_103_01 ба prob04_103_02 векторууд перпендикуляр бол y -ийн утгыг ол.

Нээгдсэн тоо : 165