Эерэг сөрөг тоонуудын үйлдлүүд

Абсалют хэмжээ /модул/

Модул гэдгийг сөрөг тооны хувьд « – » тэмдгийг « + » тэмдгээр солиход гарах эерэг тоо харин эерэг тоо болон тэгийн хувьд энэ тоо өрөө байна гэж ойлгоно. Тооны абсалют хэмжээ /модул/-ийг тэмдэглэхдээ тухайн тоог хоёр босоо зураасын дунд бичдэг.

Жишээ.
| -5 | = 5, | 7 | = 7, | 0 | = 0 г.м

Нэмэх

Ижил тэмдэгтэй хоёр тоог нэмэхдээ тэдгээрийн абсалют хэмжээг нэмээд гарсан нийлбэрт ерөнхий тэмдгийн нь тавина.

Жишээ.
( + 6 ) + ( + 5 ) = 11; ( - 6 ) + ( - 5 ) = - 11.

Өөр тэмдэгтэй хоёр тоог нэмэхдээ абсалют хэмжээ нь их тооноос абсалют хэмжээ нь бага тоог хасаад гарсан үр дүн нь абсалют хэмжээ нь их тооныхоо тэмдгийг авна.

Жишээ.
( - 6 ) + ( + 9 ) = 3; ( - 6 ) + ( + 3 ) = - 3.

Хасах

Хасах үйлдлийг хасагдагчийн тэмдгийг єєрчлєхгүй, хасагчийн тэмдгийг эсрэгээр өөрчлөөд нэмэх үйлдлээр солиж болно.

Жишээ.
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3.
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13.
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3.
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13.

Үржих

Хоёр тоог үржихдээ тэдгээрийн абсалют хэмжээг үржүүлнэ. Ингэхдээ үржвэр нь үржигдхүүнүүдийн тэмдэг нь ижил байвал « + » харин үржигдхүүнүүдийн тэмдэг нь єєр байвал « - » тэмдэгтэй байна. Үржвэрийн тэмдгийн дүрэм

+ · + = +
+ · – = –
– · + = –
– · – = +

Хоёр болон түүнээс олон тооны үржвэрийн тэмдгийг дараах байдлаар тодорхойлно. Сөрөг тэмдэгтэй үржигдхүүнүүдийн тоо нь тэгш байвал « + » сондгой байвал « - » тэмдэгтэй байна.

Жишээ.


Хуваах

Хоёр тоог хооронд хуваахдаа хуваагдагчийн абсалют хэмжээг хуваагчийн абсалют хэмжээнд хувааж ногдвор нь хуваагдагч, хуваагч хоёр ижил тэмдэгтэй байвал « + », өөр тэмдэгтэй байвал « - » тэмдэгтэй байна. Энд үржвэрийн тэмдгийн дүрэм адилхан үйлчилнэ.

+ · + = +
+ · – = –
– · + = –
– · – = +

Жишээ.
( - 12 ) : ( + 4 ) = - 3; ( - 6 ) : ( - 2 ) = + 3.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 993 Нийтийн

Ямарч натурал тоог ангилалын бүрдүүлэгчдийн нийлбэр хэлбэрээр илэрхийлж болно.
Үүнийг ойлгохын тулд 999 тоог аваад үзье. 999 тоо нь 9 зуут, 9 аравт, 9 нэгжээс бүрдэнэ.

Тэгвэл 999 = 9 зуут + 9 аравт + 9 нэгж = 900 + 90 + 9 гэсэн үг.

Дээрх бичлэгийн 900, 90, 9 бол оронгийн бүрдүүлэгчид.

  Нээгдсэн тоо: 386 Бүртгүүлэх

Бичгэн дугаарлалт гэдэг нь тоог бичгийн тэмдэгүүдээр илэрхийлэх юм.

Цифрүүд

Цифр бол тооны бичлэгт хэрэглэдэг тэмдэгт. Аравтын системд

Цифр Нэр
нэг 1
хоёр 2
гурав 3
дөрөв 4
тав 5
зургаа 6
долоо 7
найм 8
ес 9
тэг 0

дээрх арван цифрээр бүх тоонуудыг бичдэг.

  Нээгдсэн тоо: 7416 Төлбөртэй

Илтгэгч тэгшитгэл элсэлтийн ерөнхий шалгалтын материалд багтах нь бараг л гарцаагүй. Иймд төгсөгчид энэ төрлийн тэгшитгэлүүдийг бодох аргуудыг эзэмшсэн байх шаардлагатай. Тогтмол суурьтай зэргийн илтгэгчээр хувьсагч буюу үл мэдэгдэгч агуулагдсан тэгшитгэлийг илтгэгч тэгшитгэл гэдэг. Илтгэгч тэгшитгэлийг бодохдоо сурагчид ихэвчлэн дараах хүндрэлүүдтэй тулгардаг.

  • Илтгэгч тэгшитгэл, тэнцэтгэл биш, тэдгээрийн системийг бодох аргачлалыг нарийн сайн мэдэхгүй
  • Зэргийн чанар, илэрхийлэл хувиргах техникийг сайн эзэмшээгүйн улмаас илтгэгч тэгшитгэл, тэнцэтгэл бишд анхдагч тэгшитгэл болон тэнцэтгэл биштэй эн чацуу биш хувиргалтыг хийх
  • Шинэ хувьсагч /орлуулга/ оруулан бодолтыг хийсний дараа буцаан орлуулга хийхээ мартах

  Нээгдсэн тоо: 1468 Төлбөртэй

Рационал бутархай гэдэг нь хуваар болон хүртвэр нь олон гишүүнтээс бүрдсэн бутархайг хэлнэ. Монгол хэлний орчуулга гэж байдаггүй байх. Гэхдээ олон гишүүнт хуваар болон хүртвэрт нь орсон бутархайг рационал гээд ойлгоход болно. Рационал бутархайтай ажиллах нь математикийн олон төрлийн бодлогыг бодох үндэс болдог учраас үүнийг сайтар эзэмшсэн байх ёстой. Бутархайг зөв эмхэтгэж сураагүй тохиолдолд энгийн илэрхийллийг ч бодож чадахгүйд хүрдэг. Үүнээсээ болоод сурагчид математикийг хүнд гэж бодон тооны хичээлээс айдаг бүр зугтаадаг болдог. Гэтэл математикийн шинжлэх ухаан нь бусдынхаа суурь тул үүнийг ойлгохгүйгээр өөр бусдад суралцан амжилтад хүрнэ гэдэг бараг мөрөөдөл. Энэ бол миний бодол. Одоо үндсэн асуудалдаа орцгооё.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 201

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 284

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 240

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 346

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 390

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 407

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 472

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 533

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 568

 
Энэ долоо хоногт

Кубын ирмэг a. Дээд талын төвийг суурийн оройтой холбоход үүсэх пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 1495

 

A=(-2; 3; 5), B=(4; -1; 7) векторууд өгөгджээ. 3A-2B векторын координатуудын нийлбэрийг ол.

Нээгдсэн тоо : 1075

 

Утасны лавлах номыг дэлгэн 7 цифрээс бүрдсэн дугаарыг санамсаргүйгээр байдлаар сонгоход дугаарын сүүлийн дөрвөн цифрүүд ижил байх хувилбарын тоог ол.

Нээгдсэн тоо : 307