Периметр, талбай

Геометрийн ухагдхуунууд практикт ойр боловч сурагчид геометрийн бодлогын нөхцлийг ойлгон зураг гаргаж чадахгүй байх нь элбэг. Энэ нь бодлогын нөхцөлд өгөгдсөн ухагдхууныг зөв ойлгон аваагүйтэй шууд холбоотой асуудал. Иймээс сайтад хавтгайн геометрийн сэдвээр хичээлүүдийг бэлтгэн оруулах санаа төрлөө.

Цэг, шулуун, хэрчим, муруй, өнцөг, хугарсан шугам, тойрог, гурвалжин гэх мэтээр олон төрлийн геометрийн хавтгай дүрсүүд бий.

Дээрх зурагт үзүүлсэн дүрсүүдийг сайн ажиглавал эдгээрээс битүү шугамаар үүссэн тойрог, гурвалжин хоёрыг онцолж болохоор.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1049 Нийтийн

Ямар нэгэн зүйл /обьект/ эсхүл хийгдэж буй үйлдлийн тоог мэдэхийн тулд тэдгээрийг тоолох хэрэгтэй. Тоолол гэдэг нь ямар нэгэн тоон үзүүлэлтийг тооцох үйлдэл эсхүл тооллогоор илэрхийлэгдэнэ. Тоололд орж буй тусдаа обьект бүр эсхүл тусдаа үйлдэл бүрийг нэгж гэнэ. Нэгж гэдэг нь тусдаа обьектын хийсвэрлэлийг илэрхийлэх тоо юм. Тоололын үр дүн буюу тоологдсон нэгжийн нийлбэрийг тоо гэж нэрлэнэ.

  Нээгдсэн тоо: 28313 Нийтийн

Энэ хичээлээр шүргэгч тэгшитгэлийг олох бодлогуудын талаар авч үзэцгээе. Ямар нэгэн функцийн график татсан шүргэгч шулууны тэгшитгэлийг олох, шүргэлтийн цэгийг олох гэх мэтээр шүргэгч шулуунтай холбоотой бодлогууд ЭЕШ -нд ирдэг. Шүргэгч шулууны тэгшитгэлийг гаргахын тулд уламжлалын геометр утгыг санацгаая. Хэрвээ y=f(x) функцийн графикийн x0 цэгт шүргэгч татвал түүний налуун коэффициент нь шүргэгч болон OX тэнхлэгийн эерэг чиглэл хоёрын хоорондох өнцгийн тангенстай тэнцүү байдаг.

  Нээгдсэн тоо: 4038 Төлбөртэй

Логарифмыг ердийн тоонуудын адилаар нэмж, хасан төрөл бүрээр хувиргаж болдог. Гэхдээ логарифм бол ердийн тоонууд биш болохоор энд үндсэн чанарууд гэж нэрлэгдэх өөрийн гэсэн дүрэм үйлчилнэ. Эдгээрийг заавал мэддэг байх хэрэгтэй. Үгүй бол логарифмын ямар ч бодлогыг бодох боломжгүй юм. Үндсэн чанарууд олон биш учраас сайн ойлгоод дадлага хийхэд тэдгээрийг тогтоон авахад их цаг хугацаа шаардахгүй. Ингээд логарифмын үндсэн чанаруудтай танилцая.

  Нээгдсэн тоо: 12156 Нийтийн

Дифференцал

Функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэнэ. 
/Зур. 2 / дээр дифференциалын геометр утгыг үзүүллээ. Энд df=CD

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 8

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 16

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 16

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 27

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 38

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 657

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693