Тойргуудын харилцан байршил

Хоёр тойрогийн харилцан байршлыг тэдгээрийн радиусууд R, r болон төв хоорондын зай d гээр харьцуулан тодорхойлохыг авч үзье. Тодорхой байх үүднээс R≥r гэж үзье. Тойргууд харилцан байрших байрлалуудыг авч үзвэл

Огтлолцсон тойргууд хоёр ерөнхий цэгтэй байна.

Тойрогийн төв хоорондын зай тэгээс их байгаад түүний хэмжээ тойргуудын радиусуудийн ялгавар ба нийлбэрийн дунд байвал тойргууд хоёр цэгт огтлолцоно.

Математик тэмдэглэгээгээр тодорхойлбол R > r, d>0 бол R-r < d < R+r нөхцөл биелж байхад тойргууд хоёр цэгт огтлолцоно.

Огтлолцоогүй тойргууд ерөнхий цэггүй.

Тойргууд огтлолцохгүйгээр гурван янзаар байрлаж болно.

1-р хувилбар.

Нэг тойрог нөгөөгийнхөө гадна байрлах.
Хэрвээ тойрогийн төв хоорондын зай тэгээс их байгаад тойргуудын радиусийн нилбэрээс их байвал нэг тойрог нөгөөгийнхөө гадна байрлана.
Өөрөөр хэлбэл d > R+r

2-р хувилбар

Нэг тойрог нөгөөгийнхөө дотор байрлан тэдгээрийн төвүүд нь давхцсан.

Тойргуудын төв хоорондын зай нь тэгтэй тэнцэх тойргуудыг төвлөрсөн тойргууд гэж нэрлэдэг. Нэршлийг арай өөрөөр хэлдэг байж магадгүй.
Өөрөөр хэлбэл тойргуудын төвүүд давхцаж байвал төв хоорондын зай тэг бөгөөд богино радиустай тойрог их радиустай тойргийн дотор байрлана.

3-р хувилбар

Нэг тойрог нөгөөгийнхөө дотор байрласан ч тэдгээрийн төвүүд нь давхцаагүй.

Тойргуудын төв хоорондын зай нь тэгтэй тэнцэхгүй бөгөөд тойргуудын радиусуудийн ялгавараас бага байвал богино радиустай тойрог их радиустай тойргийн дотор байрлана.
Өөрөөр хэлбэл d < R-r

Тойргууд ерөнхий нэг цэгтэй байвал тэдгээрийг шүргэлцсэн тойргууд гэнэ.

Энд дотоод ба гадаад гэсэн хоёр тохиолдол бий.

Шүргэлцсэн тойргуудын төвүүд болон тэдгээрийн ерөнхий цэг нэг шулуун дээр байрлана.

Дотоод шүргэлцэл

Тойргуудын төвүүд хоорондын зай тэгээс их байгаад радиусуудийн ялавартай тэнцүү бол тойргуудыг дотоод шүргэлцсэн гэнэ.
Өөрөөр хэлбэл R>r, d>0 бол d=R-r байна гэсэн үг.

Гадаад шүргэлцэл

Тойргуудын төвүүд хоорондын зай тэгээс их байгаад радиусуудийн нийлбэртэй тэнцүү бол тойргуудыг гадаад шүргэлцсэн гэнэ.
Өөрөөр хэлбэл R>r, d>0 бол d=R+r байна гэсэн үг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5029 Нийтийн

Зарим тодорхой интегралууд



  Нээгдсэн тоо: 4386 Бүртгүүлэх

Өнцөг гэдэг нь нэг цэгээс гарсан хоёр цацрагаар үүсэх геометрийн дүрс юм. Өөр хэлбэл ерөнхий эхлэлтэй хоёр цацрагийг өнцөг гэнэ. Өнцгийн бүрдүүлж буй цацрагуудыг өнцгийн талууд харин ерөнхий эхлэлийг өнцгийн орой гэдэг.

Тодорхойлолтыг ойлгохын тулд цацраг ухагдхуун -ы хичээлийг үзээрэй.

Жич: Хавтгайн геометрийн үндсэн ухагдхууныг ойлговол геометрийн бодлогыг бодоход хөнгөн. Иймээс Хавтгайн геометр багц хичээлүүдийг үзэхийг зөвлөе. Хичээлийг ойлголт бүрээр жижиг хэмжээтэй бэлтгэсэн тул судлахад хүндрэлгүй. Үндсэн ухагдхуунуудыг шууд цээжлэх гэж зүтгэлгүй бодлого бодохдоо тэдгээрийг ашиглан мартсан үедээ дахин эргэн харах байдлаар явбал аяндаа илүү сайн ойлгон тогтоон авдаг.

  Нээгдсэн тоо: 7461 Нийтийн

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

  Нээгдсэн тоо: 411 Бүртгүүлэх

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа давтагдах хасалтаар илэрхийлж болно. Жишээ нь 62 -т хуваа гэдэг нь 62 хэдэн удаа агуулагдахыг тооцно гэсэн үг. Үүнийu 6-гаас 2-ыг давтан хасч

6 - 2 = 4
4 - 2 = 2
2 - 2 = 0

тодорхойлж болно. 6-гаас 2-ыг давтан 0 хүртэл хасахад 3 удаа хасалтыг хийсэн нь 62 гурван удаа /дахин/ агуулагдаж буйг илэрхийлнэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 290

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 250

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 401

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 420

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 554

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1096

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304