Бодлого 3.175
Тэгшитгэл хэдэн шийдтэй вэ? (ЭЕШ 2020 A-16)

|x-2|=|x-3|+2 тэгшитгэл хэдэн шийдтэй вэ?

Бодолт

Модултай бодлого сурагчдад нилээд хүндрэл дагуулдаг. Ухагдхууныг нэг мөр сайн ойлговол асуудал тийм ч хүнд биш гэдгийг Модултай тэгшитгэлийг бодох хичээлийг үзэн ойлгон аваарай.

Өгөгдсөн тэгшитгэлийн тодорхойлогдох муж ]-∞; +∞[ байна. Өөрөөр хэлбэл тэгшитгэл бүх тоон шулуунд тодорхойлогдоно гэсэн үг.
Модултай тэгшитгэлийг бодох универсал аргачлалын дагуу тэгшитгэл дэх модул бүрийг тэгтэй тэнцүүлэхэд үүсэх тэгшитгэлийг бодвол x-2=0  ->  x=2;  x-3=0  ->  x=3; гэж гарна. Гарсан шийдүүд тэгшитгэлийн тодорхойлогдох мужийг ]-∞; 2[, [2; 3[, [3; +∞[ гэсэн гурван интервалд хуваана. Одоо интервал тус бүрээр анхдагч тэгшитгэлийг бодъё.

  1. ]-∞; 2[ завсарт тэгшитгэлийн модул дахь функцууд бүгд сөрөг утгатай тул модулаас -(x-2)=-(x-3)+2 гэж чөлөөлөгдөнө. Тэгшитгэлээс 0=3 гэсэн буруу тэнцэл үүсэх тул ]-∞; 2[ завсарт тэгшитгэл шийдгүй.
  2. [2; 3[ завсарт |x-2| модул эерэг харин |x-3| модул сөрөг утгатай тул модулаас x-2=-(x-3)+2 гэж чөлөөлөгдөнө. Тэгшитгэлийн x-2=-x+3+2 -> 2x=7 -> x=3,5 шийд [2; 3[ завсарт харьяалагдахгүй тул анхдагч тэгшитгэлийн шийд болж чадахгүй.
  3. [3; +∞[ завсарт тэгшитгэлийн модул дахь функцууд бүгд эерэг утгатай тул модулаас x-2=x-3+2 гэж чөлөөлөгдөнө. Тэгшитгэлээс 0=1 гэсэн буруу тэнцэл үүсэх тул ]3; +∞[ завсарт тэгшитгэл шийдгүй.      

Тэгшитгэлийн шийд ]-∞; 2[, [2; 3[, [3; +∞[ интервалуудаас олдсон шийдүүдийн нэгдэл байх ёстой. Дээрх тооцоогоор тэгшитгэл аль ч интервалд шийдгүй тул анхдагч тэгшитгэл шийдгүй.

Тэгшитгэлийн модул доторх функцууд шугаман тул бодлогыг графикийн аргаар хөнгөн шийдэх боломжтой. Тэнцүүгийн тэмдгийн хоёр тал дахь функцуудийн графикийг байгуулбал

prob03_175_01

байна. Эндээс графикуудад огтлолцол байхгүй тул тэгшитгэл шийдгүй нь шууд харагдана. Графикийг байгуулахад модул ухагдхууныг сайн ойлгосон байх шаардлагатай нь ойлгомжтой. Модулаас дандаа эерэг тоо гарна гэдгийг мэддэг бол модулууд тэг авах x -ийн утгаас хоёр тийш 2 утга олоход л графикийг төвөггүй байгуулна.

Зөвлөмж: Энгийн шугаман тэгшитгэлийн хувьд графикийн арга хурдан боловч ерөнхий тохиолдолд модултай тэгшитгэлийг бодох универсал аргачлал илүү.  

Хариу

шийдгүй

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

системийг бод.

Нээгдсэн тоо : 390

тэгшитгэлийг бод.

Нээгдсэн тоо : 1080

16x+10-32=35-10x-5 тэгшитгэлийг бод.

Жич: Тэгшитгэл үзэж эхлэж байгаа сурагчдад.

Нээгдсэн тоо : 1492

a параметрийн ямар утганд тэгшитгэлийн нэг шийд нь нөгөө шийдийн квадраттай тэнцүү байх вэ?

Нээгдсэн тоо : 1413

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 134

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 198

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 200

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 223

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 219

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 300

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 227

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 225

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 223

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1365

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1499

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1038