Модултай тэгшитгэлийг бодох III

Модул орсон тэгшитгэл сурагчдыг хүнд асуудалд оруулдаг. Шалгалт шүүлэгт ийм төрлийн тэгшитгэлүүд дээр сурагчид ихэнх нь таах аргаар хариуг бөглөдөг нь нууц биш. Гэтэл тэтэгэлэгт хөтөлбөр, уралдаант шалгалт гэх мэт илүү нарийн авдаг буюу бичгийн шалгалтанд тааж оноо авна гэсэн ойлголт байхгүй болдог. Ялангуяа өгсөн даалгаварын бодолтоор оноо өгдөг бичгийн даалгавар байвал яах билээ. Иймээс сэдвийг онолын болоод практик талаас гүнзгий ойлгосон байх хэрэгтэй. Ингэж чадсан тохиолдолд шалгалт, шүүлэгийг ямарч хэлбэрээр авсан танд асуудал үүсэхгүй. Хичээлээр тэгшитгэлийн хоёр талд модул орсон болон модултай тэгшитгэлийг задлах аргаар бодох тухай үзнэ. Материалыг илүү сайн ойлгохын тулд Модултай тэгшитгэлийг бодох II , Модултай тэгшитгэлийг бодох I хичээлүүдийг үзсэн байхыг зөвлөе. 

ЭЕШ -д 800 оноо, Хоцрогдлыг бүрэн арилгана гэх мэтийн таныг цоо шинэ хүн болгочих юм шиг лоозун бол худлаа зүйл гэдгийг нэг мөр ойлгон аваарай. Таны асуудал таных байхаас өөр хэнийх ч биш тул та өөрөө л хичээн зүтгэн, тэсвэр, тэвчээрээ гаргаснаар амжилтанд хүрнэ гэдгийг хүн төрөлхтний түүх хэзээний баталсан зүйл.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 19515 Нийтийн

Нэгийн хэсэг эсвэл түүний хэд хэдэн хэсгийг энгийн бутархай гэдэг. Нэгийг ижилхэн хэсэгт хувааж байгаа тоог хуваар гэнэ. Хуваагдсан хэсгүүдээс авсан тоог хүртвэр гэнэ. Бутархайг дараах байдлаар бичнэ.

Хэрвээ хүртвэр нь хуваариасаа бага байвал бутархай 1 ээс бага бөгөөд бутархайг зөв бутархай гэдэг. Хэрвээ хүртвэр хуваартайгаа тэнцүү бол бутархай 1 тэй тэнцүү харин хүртвэр нь хуваариасаа их бол бутархай 1 ээс их байна. Ийм бутархайг засагдах бутархай гэдэг. Хүртвэр нь хуваарьтай үлдэгдэлгүй хуваагдаж байвал энэ бутархай ноогдвортой нь тэнцүү байна. 63/7=9.
Үлдэгдэлтэй хуваагдаж байвал засагдах бутархайг холимог тоогоор илэрхийлнэ.

  Нээгдсэн тоо: 15920 Төлбөртэй

Алгебрийн шугаман тэгшитгэлүүдийн системийг (АШТС) бодоход Гауссын арга их тохиромжтой. Энэ арга бусад аргуудтай харьцуулахад хэдэн давуу талтай.

  1. Тэгшитгэлийн системийг зохицож байгаа  эсэхийг урьдчилан шалгах шаардлагагүй
  2. Гауссын аргаар тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирсон системийг бодож болохын дээр тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирохгүй эсхүл үндсэн матрицийн тодорхойлогч тэгтэй тэнцүү системийг ч бодож болдог
  3. Гауссын арга харьцангуй бага тооцоогоор үр дүнд хүрдэг.

Үндсэн тодорхойлолт ба тэмдэглэгээнүүд

n үл мэдэгдэгчтэй p шугаман тэгшитгэлийн системийг авч үзье. (p болон n тэнцүү байж болно.)

  Нээгдсэн тоо: 2181 Төлбөртэй

Бид илэрхийллийг үржигдхүүнд задлах аргуудын эхний 4 -ийг өмнөх хичээлүүдээр үзсэн. Одоо та квадрат 3-н гишүүнтийг үржигдхүүнд задлахыг бүрэн хэмжээнд сурсан гэж бодож байна. Хэрвээ бид бодлого бодож байхад x -ийн зэрэгт квадратаас /2-оос/ их зэрэгтэй илэрхийлэл ороод ирвэл яах вэ? x -ийн зэрэг хоёроос их илэрхийллийг дээд эрэмбийн гэж нэрлэдэг.
Олон гишүүнтүүд гэсэн ерөнхий хэлбэртэй байдаг. n=1 бол хоёр гишүүнт, n=2 бол квадрат гурван гишүүнт, n>2 их бол ерөнхийд нь дээд эрэмбийнх гэж нэрлээд байгаа хэрэг.
Дээд эрэмбийн олон гишүүнтийн шийдийг олохдоо бид өмнө нь үзсэн аргуудыг ашиглаад үржигдхүүнд задлах боломж гарч болох ч нилээд цаг зарцуулах хэрэгтэй болж мэднэ.

  Нээгдсэн тоо: 6466 Нийтийн

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 131

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 195

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 161

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 286

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 316

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 323

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 389

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 390

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 468

 
Энэ долоо хоногт

KLM суурьтай, KL=1, KK1=d талтай KLL1K1 тэгш өнцөгт хажуу бүхий KLMK1L1M1 призм өгөгджээ. KL_|_KM, LMM1 , KMM1 хавтгайнуудын хоорондын өнцөг 60°, бол утганд призмд түүний бүх талыг шүргэх шаарыг багтааж болно.

Нээгдсэн тоо : 1803

 

тоонд хуваахад гарах тооны аравтын бичлэгт "0" цифр хэдэн удаа орох вэ?

Нээгдсэн тоо : 1506

 

Нээгдсэн тоо : 1488