Модултай тэгшитгэлийг бодох III

Модул орсон тэгшитгэл сурагчдыг хүнд асуудалд оруулдаг. Шалгалт шүүлэгт ийм төрлийн тэгшитгэлүүд дээр сурагчид ихэнх нь таах аргаар хариуг бөглөдөг нь нууц биш. Гэтэл тэтэгэлэгт хөтөлбөр, уралдаант шалгалт гэх мэт илүү нарийн авдаг буюу бичгийн шалгалтанд тааж оноо авна гэсэн ойлголт байхгүй болдог. Ялангуяа өгсөн даалгаварын бодолтоор оноо өгдөг бичгийн даалгавар байвал яах билээ. Иймээс сэдвийг онолын болоод практик талаас гүнзгий ойлгосон байх хэрэгтэй. Ингэж чадсан тохиолдолд шалгалт, шүүлэгийг ямарч хэлбэрээр авсан танд асуудал үүсэхгүй. Хичээлээр тэгшитгэлийн хоёр талд модул орсон болон модултай тэгшитгэлийг задлах аргаар бодох тухай үзнэ. Материалыг илүү сайн ойлгохын тулд Модултай тэгшитгэлийг бодох II , Модултай тэгшитгэлийг бодох I хичээлүүдийг үзсэн байхыг зөвлөе. 

ЭЕШ -д 800 оноо, Хоцрогдлыг бүрэн арилгана гэх мэтийн таныг цоо шинэ хүн болгочих юм шиг лоозун бол худлаа зүйл гэдгийг нэг мөр ойлгон аваарай. Таны асуудал таных байхаас өөр хэнийх ч биш тул та өөрөө л хичээн зүтгэн, тэсвэр, тэвчээрээ гаргаснаар амжилтанд хүрнэ гэдгийг хүн төрөлхтний түүх хэзээний баталсан зүйл.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3784 Нийтийн

Олон бодлого бодоод байвал математикт сайжирна гэсэн яриа хүмүүсийн дунд өргөн тархсан байдаг. Бодлого ихээр бодох нь техник талаасаа сайн нөлөөтэй болохоос математикийг ойлгодог болгоно гэдэг эргэлзээтэй. Онолын мэдлэгтэй байх нь ямарч хичээлийн хувьд үндсэн асуудал. Онолгүйгээр хол явахгүй гэж ярьдаг үүнийг хэлж байгаа юм. Энэ удаад Виетийн теоремийн тухай үргэлжлүүлэн авч үзье. Теорем гэдэг нь баталгаа шаардлагатай тодорхойлолт буюу нотолгоо. Өмнөх Виетийн теорем хичээлд жишээ болгон авч үзсэн гурван тэгшитгэлд теорем ажиллаж байгаа ч ямарч тэгшитгэлд адилхан ажиллана гэдгийг батлах хэрэгтэй. Теоремийг нээн олсон математикчид өөрсдөө батлаад түүнийг нь бусад нь хүлээн зөвшөөрсөн учраас математикт теоремоор бүртгэсэн хэрэг. Өнөөг хүртэл жишээ нь Фермагийн их теорем гэдэг нотолгоо батлагдаагүй, олон тооны интегралууд бодогдоогүй байсаар л байгаа. Хүн өөрийн дэвшүүлсэн санаа, нотолгоог баталснаар тэр нь теорем болно.

  Нээгдсэн тоо: 2575 Нийтийн

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

  Нээгдсэн тоо: 6483 Нийтийн

Тоо гэдэг ухагдхууныг хүмүүс маш эртнээс бий болгон ашиглан ирсэн. Эхлээд натурал тооны олонлог бий болон араас нь бутархай, эерэг иррационал тоонууд бий болсон. Орчин үеийн математикт тоонуудыг олон дэд олонлогт задлан үзэх болсон. Сурагчид эдгээр тоон олонлогуудын талаарх мэдлэг дутуугаас зарим нэгэн тэмдэглэгээг ч мэдэхгүй байх нь элбэг. Тоонуудын олонлогийн талаар сайн ойлгон тухайн олонлогт ямар тоонууд ордогийг мэдэж байх хэрэгтэй. Олонлогт багтах тоонуудыг сурагчид бараг бүгд мэддэг хирнээ ямар олонлог, хэрхэн тэмдэглэдэг, ямар шинжүүдтэй зэргийг мэддэггүй. Үүнээс болоод зарим бодлогын нөхцлийг буруу ойлгох, шийдийн олонлогийг буруу бичих зэрэг алдаануудыг гаргадаг. Иймээс тоон олонлогуудыг талаар мэдлэгтэй болцгооё.

  Нээгдсэн тоо: 2452 Бүртгүүлэх

Хавтгай дүрсийн бүх хэмжээг нэг ижил тоо / ихэсгэх эсвэл багасгах / дахин өөрчлөхөд гарсан дүрс анхны дүрс хоёрыг төстэй гэнэ. Хоёр төстэй дүрсийн хувьд тэдгээрийн харгалзах өнцгүүд тэнцүү. Нэг дүрс дээрх A, B, C, D цэгүүд нь нөгөө дүрс дээрх a, b, c, d цэгүүдтэй харгалзаж байвал гэх мэт байна.
ABCDEF ба abcdef хоёр олон өнцөгт  /Зур. 37/ төстэй бол, тэдгээрийн өнцгүүд тэнцүү , харин талууд нь порпорционал байна.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 144

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 207

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 176

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 296

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 325

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 331

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 403

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 405

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 478

 
Энэ долоо хоногт

Тэгш өнцөгт параллелепипедын диагнал түүний 3 ба 4 хэмжээтэй талстад 60 градусын өнцгөөр налсан бол диагоналын урт хэд вэ?

Нээгдсэн тоо : 1278

 

Суурийн радиус нь 4 см байх шулуун дугуй цилиндрийн нэг үзүүрээс зурагт үзүүлснээр хавтгайгаар огтлоход хамгийн урт байгуулагч нь 15 см, хамгийн богино байгуулагч нь 9 см болсон бол үүссэн биетийн эзэлхүүнийг ол.

Нээгдсэн тоо : 2922

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 202