Модултай тэгшитгэлийг бодох III

Модул орсон тэгшитгэл сурагчдыг хүнд асуудалд оруулдаг. Шалгалт шүүлэгт ийм төрлийн тэгшитгэлүүд дээр сурагчид ихэнх нь таах аргаар хариуг бөглөдөг нь нууц биш. Гэтэл тэтэгэлэгт хөтөлбөр, уралдаант шалгалт гэх мэт илүү нарийн авдаг буюу бичгийн шалгалтанд тааж оноо авна гэсэн ойлголт байхгүй болдог. Ялангуяа өгсөн даалгаварын бодолтоор оноо өгдөг бичгийн даалгавар байвал яах билээ. Иймээс сэдвийг онолын болоод практик талаас гүнзгий ойлгосон байх хэрэгтэй. Ингэж чадсан тохиолдолд шалгалт, шүүлэгийг ямарч хэлбэрээр авсан танд асуудал үүсэхгүй. Хичээлээр тэгшитгэлийн хоёр талд модул орсон болон модултай тэгшитгэлийг задлах аргаар бодох тухай үзнэ. Материалыг илүү сайн ойлгохын тулд Модултай тэгшитгэлийг бодох II , Модултай тэгшитгэлийг бодох I хичээлүүдийг үзсэн байхыг зөвлөе. 

ЭЕШ -д 800 оноо, Хоцрогдлыг бүрэн арилгана гэх мэтийн таныг цоо шинэ хүн болгочих юм шиг лоозун бол худлаа зүйл гэдгийг нэг мөр ойлгон аваарай. Таны асуудал таных байхаас өөр хэнийх ч биш тул та өөрөө л хичээн зүтгэн, тэсвэр, тэвчээрээ гаргаснаар амжилтанд хүрнэ гэдгийг хүн төрөлхтний түүх хэзээний баталсан зүйл.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2408 Нийтийн

Нэг нь нөгөөгийнхөө бүх шугаман хэмжээсийг нэг ижил харьцаагаар исэхгэх юмуу багасгах замаар гаргасан хоёр биетийг төстэй биет гэнэ. Автомашин түүний модел хоёр нь төстэй биетүүд.

Биетийн төстэй байх шинжүүд:

  • Хоёр цилиндр эсвэл конусын сууриудын радиус нь өндөртэйгээ порпорционал байвал төстэй байна
  • Хоёр ба түүнээс дээш биетүүдийн хавтгай болон муруй гадаргуунуудын талбайнууд нь дурын харгалзах хэрчмийн квадратад порпорционал байвал тэдгээр нь төстэй байна.
  • Хоёр ба түүнээс дээш биетүүдийн эзэлхүүнүүд нь дурын харгалзах хэрчмийн кубэд порпорционал байвал тэдгээр нь төстэй байна.

  Нээгдсэн тоо: 6306 Бүртгүүлэх

Стереометр нь огторгуйн дүрс ба биетийн шинж чанаруудыг судалдаг. Хавтгайн геометрт цэг, шулуун гэсэн үндсэн ойлголтууд байдаг шиг огторгуйн геометрийн үндсэн ойлголт нь шулуун ба хавтгай болно.

Огторгуйн геометрийн үндсэн аксиом - Нэг шулуун дээр үл орших огторгуйд байрлах гурван цэгийг дайруулан зөвхөн нэг л хавтгай байгуулж болно.

Нэг шулуун дээр орших гурван цэгийг дайруулан төгсгөлгүй олон / хавтгайн цацраг / хавтгайг байгуулж болно. Цацрагийн бүх хавтгайнууд дайрч өнгөрч байгаа шулууныг хавтгайн тэнхлэг гэдэг. Энэ шулуун ба түүн дээр байрлаагүй дурын цэг буюу шулууныг дайруулан зөвхөн нэг хавтгайг татаж болно. Хоёр шулууныг дайруулан хавтгайг дандаа татаж болдоггүй. Ийм шулуунуудыг зөрсөн шулуун гэнэ. Жишээ нь: Өрөөний нэг хананд татсан босоо шугам ба эсрэг хананд татсан хөндлөн шугамууд нь зөрсөн шугамууд болно.

  Нээгдсэн тоо: 2095 Бүртгүүлэх

Арксинус, арккосинус, арктангенс, арккотангенс гэдэг ойлголтоос сурагчид нилээд айдаг. Эдгээр ухагдхууныг сайтар ойлгоогүйн улмаас түүнийг ашиглах, тэдгээртэй холбогдолтой бодлого бодохоос зайлсхийдэг. Өөрөөр хэлбэл айнаа л гэсэн үг. Гэхдээ эдгээр нь ойлгосон хүндээ тригнометрийн тэгшитгэлийг бодоход асар тус болдог энгийн л ойлголтууд гэдгийг та энэ хичээлийн эцэст мэдэн авах болно.
Синус, косинус, тангенс, котангенс талаар мэдэж байхад илүүдэхгүй. Тэдгээрийн зарим өнцгүүдийн утгууд гээд хамгийн ерөнхий зүйлийг мэдэж байхад асуудал үүсэхгүй ойлгоно.

  Нээгдсэн тоо: 2181 Төлбөртэй

Бид илэрхийллийг үржигдхүүнд задлах аргуудын эхний 4 -ийг өмнөх хичээлүүдээр үзсэн. Одоо та квадрат 3-н гишүүнтийг үржигдхүүнд задлахыг бүрэн хэмжээнд сурсан гэж бодож байна. Хэрвээ бид бодлого бодож байхад x -ийн зэрэгт квадратаас /2-оос/ их зэрэгтэй илэрхийлэл ороод ирвэл яах вэ? x -ийн зэрэг хоёроос их илэрхийллийг дээд эрэмбийн гэж нэрлэдэг.
Олон гишүүнтүүд гэсэн ерөнхий хэлбэртэй байдаг. n=1 бол хоёр гишүүнт, n=2 бол квадрат гурван гишүүнт, n>2 их бол ерөнхийд нь дээд эрэмбийнх гэж нэрлээд байгаа хэрэг.
Дээд эрэмбийн олон гишүүнтийн шийдийг олохдоо бид өмнө нь үзсэн аргуудыг ашиглаад үржигдхүүнд задлах боломж гарч болох ч нилээд цаг зарцуулах хэрэгтэй болж мэднэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 131

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 193

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 160

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 286

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 316

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 322

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 388

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 389

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 467

 
Энэ долоо хоногт

KLM суурьтай, KL=1, KK1=d талтай KLL1K1 тэгш өнцөгт хажуу бүхий KLMK1L1M1 призм өгөгджээ. KL_|_KM, LMM1 , KMM1 хавтгайнуудын хоорондын өнцөг 60°, бол утганд призмд түүний бүх талыг шүргэх шаарыг багтааж болно.

Нээгдсэн тоо : 1803

 

тоонд хуваахад гарах тооны аравтын бичлэгт "0" цифр хэдэн удаа орох вэ?

Нээгдсэн тоо : 1506

 

Нээгдсэн тоо : 1488