Өнцөгийн радиан ба градус хэмжээ

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4736 Бүртгүүлэх

Өгөгдсөн MN шугамын /Зур. 85/ дагуу AB шулуун хөдөлгөөнгүй S цэгийг дайран шилжихэд шовгор гадаргуу үүснэ. MN шугамыг чиглүүлэгч гэнэ. AB шулууны хөдөлгөөний үед үүсэх A’B’, A”B”, … г.м /Зур. 85/ шулуунуудыг шовгор гадаргууг бүрдүүлэгч, S цэгийг орой гэдэг. Шовгар гадаргуу нь SA ба SB цацрагаар хоёр хэсэг үүсдэг. Шовгор гадаргуу гэж ихэнхдээ нэг хэсгийг нь авч үздэг.

  Нээгдсэн тоо: 3341 Бүртгүүлэх

Бид өмнөх хичээлийн сүүлд 3ax+9x-8x-24 илэрхийллийг үржвэрт задлах гээд ерөнхий үржигдхүүн олохгүй мухардал орсон билээ. Аргуудыг дарааллынх нь дагуу хэрэглэхийг илүү гэдгийг Бодлого бодож сурах нь I хичээлд дурдсан. Илэрхийллийг эхний арга буюу ерөнхий үржигдхүүнийг хаалтнаас гаргах аргаар эмхэтгэж болохгүй байгаа тул 2-р арга бүлэглэхийг хэрэглэх гээд үзье.

  Нээгдсэн тоо: 3315 Нийтийн

Хоёр тойрогийн харилцан байршлыг тэдгээрийн радиусууд R, r болон төв хоорондын зай d гээр харьцуулан тодорхойлохыг авч үзье. Тодорхой байх үүднээс R≥r гэж үзье. Тойргууд харилцан байрших байрлалуудыг авч үзвэл

  Нээгдсэн тоо: 6510 Төлбөртэй

Паралелграм ба трапец

Эсрэг талууд нь хос хосоороо паралел байдаг дөрвөн өнцөгтийг паралелграм гэнэ. /Зур. 32/

Паралелграмын эсрэг байрлах дурын хоёр талыг сууриуд гэх бөгөөд тэдгээрийн хоорондох зайг өндөр гэдэг. / BE, Зур. 32/

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 247

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 334

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 298

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 395

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 439

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 467

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 548

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 622

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 656

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1405

 

тэгшитгэл бод.

Нээгдсэн тоо : 1011

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1055