Өнцөгийн радиан ба градус хэмжээ

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3428 Төлбөртэй

ЕБС-ын програмын хүндхэн сэдвүүдийн нэг болох тэнцэтгэл бишийн бодолтын онцлогийг авч үзье. Функцууд эсхүл илэрхийллийг >, <,  ≥,  ≤ тэмдэгүүдээр холбосон бичлэгийг тэнцэтгэл биш гэдэг. Жишээ нь f(x)<g(x), f(x)>g(x), f(x)≥g(x), f(x)≤0 гэх мэтээр

  Нээгдсэн тоо: 5146 Бүртгүүлэх

Энэ хэсэгт бид хавтгай дүрсийн талбайг олоход өргөн хэрэглэдэг томьёонуудыг авч үзнэ.
Квадрат /Зур. 58/ a - тал , d - диагнал.

Тэгш өнцөгт /Зур. 59/ a, b - талууд.

  Нээгдсэн тоо: 3991 Бүртгүүлэх

Тэгш өнцөгт гурвалжны талуудын харьцааг хурц өнцгийн тригнометрийн функцүүд гэдэг. / Зур. 2 /

  Нээгдсэн тоо: 6193 Нийтийн

Бөөрөнхий гадаргуу гэдэг нь огторгуйд байрлах O гэсэн нэг цэгээс ижил зайд орших цэгүүдийн олонлог / цэгийн геометр байрлал / юм. O цэгийг бөөрөнхий гадаргуун төв гэнэ. /Зур. 90/ AO радиус, AB диаметрийг тойрог дээрхтэй адилаар тодорхойлно.
Бөөрөнхий гадаргуугаар хязгаарлагдсан биетийг шаар /бөмбөлөг/ гэнэ. Шаарын бүх хавтгай зүсэлт нь дугуй байна. /Зур. 90/ Хамгийн том дугуй нь шаарын төвийг дайрсан зүсэлтээр үүсэх бөгөөд том дугуй гэж нэрлэнэ. Дурын хоёр том дугуй шаарын диаметрээр огтлолцоно. /Зур. 91/ Шаарын диаметрын төгсгөлд байрлах хоёр цэгийг дайруулан хязгааргүй олон том дугуй татаж болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 287

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 365

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 335

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 428

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 477

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 502

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 592

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 682

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 717

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1550

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2011

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 989