Нийлбэрийн шинжүүд

Нийлбэрийн шинжүүдийг сурагчид сайн мэддэг. Хүмүүс тоонуудын нийлбэрийг хурдан тооцоход эдгээр шинжүүдийг тогтмол хэрэглэдэг ч яг ямар шинж гэдгийг төдийлөн мэдээд байдаггүй.

Нийлбэрийн шинжүүд

Нийлбэр гэдэг бол хоёр ба түүнээс тоонуудыг нэг тоо болгон нэгтгэх арифметик үйлдэл.
Нийлбэрт орж буй тоонуудыг нэмэгдхүүн харин тэдгээрийг нэгтгэсэн тоо буюу үр дүнг нийлбэр гэж гэж нэрлэнэ. Нийлбэр дараах шинжүүдтэй.

Байр солих шинж

Нэмэгдхүүнүүдийн байрыг солиход нийлбэр өөрчлөгдөхгүй шинжийг бүгд мэддэг. Өөрөөр хэлбэл нийлбэрт орж буй гишүүдийн байрыг солиход нийлбэрт нөлөөлөхгүй гэсэн үг. Эндээс дурын a, b тоонууд эсхүл илэрхийллийн хувьд a+b=b+a байна.

Жишээ нь
6+7=7+6=13;
x2+3y+z=3y+z+x2;
1+2+3=3+2+1=6.

Бүлэглэн нэгтгэх шинж

Гурав ба түүнээс дээш нэмэгдхүүнтэй нийлбэрийн дурын нэмэгдхүүнүүдийг тэдгээрийн нийлбэрээр солиход нийлбэр өөрчлөгдөхгүй. Иймээс дурын a, b, c тоонууд эсхүл илэрхийллийн хувьд a+b+c=a+(b+c)=b+(a+c) байх болно.

Жишээ нь
6+7+3=6+(7+3)=6+10=16;
2x+3y+3x+2y=2x+3x+3y+2y=5x+5y;
2+13+8+7=2+8+13+7= (2+8)+(13+7)=10+20=30

Нэмэгдхүүнүүдийг тэдгээрийн нийлбэрээр солихын өмнө байр солих шинжийг ашиглаад дараа нь нэмэгдхүүнүүдийг тэдгээрийн нийлбэрээр сольж байгааг анхаарна уу. Тоонуудын хувьд бүлэглэн нэгтгэх шинжийг шууд ашиглаад явахад онцын хүндрэлгүй ч илэрхийллийн хувьд эхлээд байр солих шинжийг ашиглааад дараа нь бүлэглэх нь илүү оновчтой.
Шинжийг нийлбэрийг хурдан тооцоход ихээр ашигладаг.

Нийлбэр дэх тэг

Нийлбэрт орсон тэг нийлбэрт нөлөөлөхгүй. Эндээс a, b, 0 тоонууд эсхүл илэрхийллийн хувьд a+b+0=a+b=b+a байх болно.

Жишээ нь
6+2+0=8;
2x+3y+0=2x+3y=3y+2x;

Жич: Хичээлийн материал энгийн мэт санагдаж магадгүй. Сайтын материалууд ямарч насны, ямарч бэлтгэлтэй хүмүүст зориулагдсан тул агуулгын хувьд янз бүр байж таарна. Нийлбэрийн шинжүүдийг мэддэг хүнд энгийн боловч алгебрийг үзэж эхлэхдээ энгийн мэт эдгээр шинжүүдийг сайн ойлгон тогтоон авахгүйгээр өнгөрсөөр цааш илүү нарийн ухагдхуунуудыг ойлгохгүй болох суурь болдог гэдгийг санаарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1516 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

  Нээгдсэн тоо: 8758 Төлбөртэй

Элсэлтийн ерөнхий шалгалтын материалд вектортой холбоотой бодлогууд орж ирэх нь элбэг байдгийн дээр геометрийн зарим бодлогуудыг векторын үйлдлүүдийг ашиглан их амархан шийдэх боломжтой. Иймээс энэ хичээлээр вектор, координатын суурь бодлогууд болох

  • Векторын координатыг түүний эхлэл ба төгсгөлийн координатаар хэрхэн олох
  • Координатууд нь өгөгдсөн үед векторын уртыг хэрхэн олох
  • Хоёр векторын нийлбэр, ялгавар векторын координатыг хэрхэн олох
  • Хэрчмийн дундажийн координатыг хэрхэн олох
  • Векторуудын скаляр үржвэр гэж юу болох
  • Вектор хоорондын өнцгийг хэрхэн олох

талаар авч үзэх юм. Эдгээр бодлогуудыг бодож сурсан байхад ЕБС-ийн хөтөлбөрт багтах вектортой холбоотой бүхий л бодлогыг шийдэх чадвартай болно. Огторгуй дахь вектор координатын үйлдлүүд хавтгайн дүрэмтэй яг ижлээр хийгддэг. Энд зөвхөн гуравдагч координат л нэмэгдэн орж ирдэг.

  Нээгдсэн тоо: 1962 Төлбөртэй

Тоон болон үсгэн илэрхийллүүд нь « = » тэмдгээр холбогдож байвал тэдгээрийг тэнцэл үүсгэлээ гэнэ. Дурын тоон тэнцэл мөн түүнчлэн үсгийн оронд орлуулж болох бүх тоон утгуудад зөв байх дурын үсгэн тэнцлүүдийг адитгал гэнэ.

Жишээ

  • 4 · 7 + 2 = 30 тоон тэнцэл нь адитгал юм.
  • үсгэн тэнцэл нь бас адитгал. Учир нь үсгүүдийн бүх утганд тэнцэл биелнэ.

  Нээгдсэн тоо: 2370 Төлбөртэй

Энэ нийтлэлээр бодит шалгалт дээр ирж байсан тригнометрийн хоёр бодлогын бодолтыг дэлгэрэнгүйгээр тайлбарлах болно. Эдгээр бодлогын бодолтыг сайн судлаад ойлговол тригнометрийн бодлогыг ойлгоход сайн суурь болж чадна. Бодлогын шийдүүдээс өгөгдсөн завсар дахь утгуудыг сонгох нэмэлт нөхцөл оруулсан нь сурагчдаас тригнометрийн илүү нарийн ойлголтыг шаардах юм. Сурагчид бодлогыг хураангуйлан энгийн хэлбэрт оруулж чаддаг ч шийдийг гаргах тэр тусмаа өгөгдсөн завсарт харьяалагдах шийдийг сонгохдоо үндсэн хүндрэлтэй тулдаг. Иймд бодолтуудыг анхааралтай судлаад ойлгон авахыг хичээгээрэй. Олон бодлого бодохдоо биш аргачлалыг ойлгох нь чухал.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 149

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 122

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 195

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 138

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 137

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 719

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124