Дөрвөн өнцөгт

Дөрвөн өнцөгт гэдэг нь дөрвөн өнцөг, дөрвөн талтай гүдгэр олон өнцөгт. Дөрвөн өнцөгтийг дөрвөн цуваанаас бүрдсэн битүү тахир шугамаар үүсэх хавтгайн тахир шугам доторх хэсэг бүрдүүлдэг.

Дөрвөн өнцөгтийг түүний оройг тэмдэглэсэн үсгүүдийн дарааллаар тэмдэглэнэ. Жишээ нь ABCD дөрвөн өнцөгт. Зурагт үзүүлсэн ABCD дөрвөн өнцөгтөд A, B, C, D - цэгүүд нь дөрвөн өнцөгтийн оройнууд харин AB, BC, CD, DA - бол түүний талууд.
Нэг тал дээр орших оройнуудыг хөрш, хөрш бус оройнуудыг эсрэг орших орой гэдэг.

ABCD дөрвөн өнцөгтөд A ба B, B ба C, C ба D, D ба A оройнууд хөрш харин A ба C, B ба D оройнууд эсрэг орших оройнууд болно. Хөрш оройнуудын өнцгийг хөрш харин эсрэг орших оройн өнцгийг эсрэг орших гэж бас нэрлэдэг.
Дөрвөн өнцөгтийн талуудыг ч бас хөрш болон эсрэг орших гэж хувааж болно. Ерөнхий оройтой талуудыг хөрш эсхүл хамар харин ерөнхий оройгүй талуудыг эсрэг орших талууд гэж нэрлэдэг.

AB ба BC, BC ба CD, CD ба DA, DA ба AB - талууд хамар харин AB ба DC, AD ба BC - талууд эсрэг орших талууд.
Эсрэг орших оройнуудыг холбосон хэрчмийг дөрвөн өнцөгтийн диагонал гэдэг. Дөрвөн өнцөгтөд эсрэг орших хоёр хос оройнууд байдаг учраас түүнд хоёр диагонал байдаг.

AC, BD хэрчмүүд нь ABCD дөрвөн өнцөгтийн диагоналууд.

Дөрвөн өнцөгтийн төрлүүд

Гүдгэр дөрвөн өнцөгтүүдийн үндсэн төрлүүдийг авч үзье.

Трапец - эсрэг орших талуудын нэг хос нь бие биедээ паралел харин нөгөө хос нь паралел биш дөрвөн өнцөгт.

  • Адил хажуут трапец -хажуу талууд нь тэнцүү трапец
  • Тэгш өнцөгт трапец - аль нэг өнцөг нь тэгш өнцөгт трапец

Параллелграм - эсрэг орших талуудын хоёр хос бие биедээ паралел дөрвөн өнцөгт.

  • Тэгш өнцөгт - бүх өнцөг нь тэнцүү параллелграм
  • Ромб - бүх талууд нь тэнцүү параллелграм
  • Квадрат - тал болон өнцгүүд нь тэнцүү параллелграм. Тэгш өнцөгт болон ромб квадрат байж болно.

Гүдгэр дөрвөн өнцөгтийн өнцгийн шинжүүд

Бүх гүдгэр дөрвөн өнцөгтийн өнцгүүд дараах шинжүүдтэй

  • Дотоод ямарч өнцөг 180 градусаас бага
  • Дотоод өнцгүүдийн нийлбэр 360 градустай тэнцүү.

Жич: Зарим сурагчдад хичээлийн материал энгийн санагдаж байж магадгүй. Гэхдээ сурагч бүр ижил төвшинтэй байдаггүй, сэдвийг дөнгөж судалж эхэлж байгаа гэх мэтээр бүхий л сурагчдад зориулж байгаа учраас зарим хичээлийн материал маш энгийн байх ч тохиолдол бий. Хэрвээ та хичээлийн материалыг мэдэж байвал их сайн. Хичээлд тайлбарлаад байгаа тодорхойлолтуудаар бодлогын нөхцлийг өгдөг учраас эдгээрийг цээжээр мэддэг байх хэрэгтэй. Жишээ нь бодлогын нөхцөлд эсрэг эсхүл хамар өнцгүүд гээд ороод ирэхэд юуг хэлээд байгааг мэдэхгүй бол зургийг гаргахад хүндрэнэ. Энэ нь бодлогыг шийдэж чадахгүйд хүргэх үндсэн шалтгаан болдог.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 11794 Нийтийн

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

  Нээгдсэн тоо: 4821 Нийтийн

Тооны стандарт хэлбэр гэдэг нь түүний үржвэр хэлбэрийн бичилт юм.
Жишээ нь x·10n энд 1 ≤ x < 10, n - бүхэл тоо.

10 -ын бүхэл зэргүүдээр маш том болон жижиг тоонуудыг тооны стандарт хэлбэрээр бичиж болдог. Өөрөөр хэлбэл тоог илэрхийлэх урт бичлэгийг богино болгох боломж гэсэн үг.

  Нээгдсэн тоо: 16117 Бүртгүүлэх

Хамгийн их ерөнхий хуваагч

Хэд хэдэн тооны ерөнхий хуваагч гэдэг нь эдгээр тоонуудын бүгдийнх нь хуваагч байдаг тоог хэлдэг. Жишээ нь 36, 60, 42 гэсэн тоонууд нь 2, 3, 6 гэсэн ерөнхий хуваагчтай байна. Ерөнхий хуваагчдын дотроос хамгийн их хуваагчийг хамгийн их ерөнхий хуваагч буюу / ХИЕХ / гэдэг. Тэгвэл дээрх жишээнээс 6 бол 36, 60, 42 тоонуудын / ХИЕХ / юм.

Тоонуудын / ХИЕХ / -ийг олохын тулд:

  1. Тоо тус бүрийг анхны тоон үржвэрт задлана. Жишээ нь  360 = 2 · 2 · 2 · 3 · 3 · 5
  2. Бүх анхны тооны зэргийн үржвэрт оруулна. Жишээ нь 360 = 2 · 2 · 2 · 3 · 3 · 5 =2³ · 3² · 5¹
  3. Бүх тооны үржвэрт орсон ерөнхий хуваагчийг бичнэ
  4. Үржвэрүүдээс хамгийн бага зэрэгтэй хуваагчийн зэргийг авна
  5. Гарсан хуваагчийн зэргийг бүгдийг үржүүлнэ

  Нээгдсэн тоо: 1584 Төлбөртэй

Бутархай хэсэгт зарим тоонууд хязгааргүй давтагдсан бутархайнууд байдаг. Ийм бутархайнуудын бичлэг 0,666666...; 1,33333...; 0,6818181818... гэж харагдах бөгөөд эдгээрийг үет бутархай гэж нэрлэдэг. Хичээлээр ийм бутархайнууд хэрхэн үүсдэг тэдгээртэй яаж ажиллахыг үзэх юм.

Үет бутархай үүсэх.

1-ийг 3 хуваавал эхлээд тэгээр өгөөд нэг үлдэнэ. Үлдэгдэл дээр тэг нэмээд 3 -аар өгөөд дахиад 1 үлдэнэ. Дахин тэг нэмээд 3-аар өгөөд дахиад нэг үлдэнэ. Эндээс 1:3=0,33333... гэсэн бутархай үүснэ.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 134

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 198

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 200

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 221

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 218

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 299

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 227

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 225

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 222

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1364

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1498

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1038