Тодорхойгүй интеграл

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

Үүнээс гадна бидэнд Уламжлалын үндсэн жагсаалтууд , Үндсэн интегралуудын жагсаалтуудын  томьёонууд хэрэгтэй.
Тодорхойгүй интегралд юу нь хэцүү вэ? гэвэл дифференциалчлахад тогтсон 5 дүрэм, уламжлалын үндсэн жагсаалт гээд үйлдлийн нилээд нарийн алгоритм байдаг бол интегралд бүгд өөр интегралчлах хэдэн арван дүрэм үйлчилдэг. Гэхдээ бид үндсэн цөөн тооны дүрмийг, үндсэн интегралуудын жагсаалтуудтай ашиглаж сурсан байхад хангалттай.
Интегралын хүснэгтээс харвал уламжлалынхтай адилаар интегралчлах хэдэн дүрэм, зарим элементар функцийн интегралуудыг харна. Хүснэгтээс ямарч интеграл

хэлбэртэй байгааг амархан харж болохоор. Энэ бичлэгийг нарийвчлан ойлгохоос эхлэе.

  • - интегралын тэмдэг.
  • f(x) - интеграл доорх функц
  • dx - дифферанциалын тэмдэг. Интегралын бичилт болон бодох үедээ энэ тэмдгийг орхиж болохгүй.
  • f(x)dx - интеграл доорх илэрхийлэл
  • F(x) - эх функц
  • F(x)+C - эх функцийн олонлог. Энд тогтмолд их анхаарал өгөөд байх хэрэггүй. Ямарч тодорхойгүй интегралын хариунд C тогтмолыг нэмж өгдөг.

Интегралын бичилт болон хүснэгтийн интегралуудыг дахин харвал тэнцүүгийн тэмдгийн зүүн тал нь F(x)+C гэсэн өөр функц болоод байгаа биз.
Эндээс тодорхой бус интегралыг бодно гэдэг нь тодорхой дүрмүүд болон хүснэгтээ ашиглан түүнийг F(x)+C гэсэн тодорхой функцэд шилжүүлэх гэж тодорхойлж болно.

Интегралын хүснэгтээс жишээ болгоод авъя. Энд интеграл гэж юу болох, эх функц юуг хэлэх гэсэн онолыг мэдээд байх шаардлага багатай. Яагаад томьёоны хувьд интеграл -cosx+C болон хувирч байгааг мэдэх албагүй. Ер нь интегралын хүснэгтийг өгөгдсөн томьёонууд гэж үзээд тогтоон авах нь зөв.
Дифференциалчлах, интегралчлах хоёр нь харилцан эсрэг үйлдлүүд гэдгээс ямарч эх функц зөв гарсан бол тэнцэл биелэгдэх ёстой. Өөрөөр хэлбэл зөв эх функцийг дифференциалчлахад интеграл доорх анхдагч функц гарах ёстой.
Тэгвэл интегралд дээрх томьёо хүчинтэй эсэхийг шалгая. Интегралын баруун хэсгээс уламжлал авбал гээд интеграл доорх функц гарч ирж байна. Эндээс эх функц дээр яагаад C тогтмол нэмэгдээд байгаа нь ч тодорхой болж ирлээ. Эргээд уламжлал авахад тогтмолууд тэг болох тул эх функц хичнээн ч байж болох нь байна.
Иймээс тодорхойгүй интегралыг бодно гэдэг нь ямар нэг функцийг олох биш эх функцийн бүх олонлогийг олохыг хэлнэ. зэрэг бүх функцууд бидний авч үзсэн хүснэгтийн интегралын шийд болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  1. Тодорхойгүй интегралаас авсан уламжлал интеграл доорх функцтэй тэнцүү.
  2. Тодорхойгүй интегралын дифференциал интеграл доорх илэрхийлэлтэй тэнцүү.
  3. Аливаа функцийн дифференциалын тодорхойгүй интеграл энэ функц болон дурын тотмолын нийлбэртэй тэнцүү
  4. Тогтмолыг интегралаас гаргах эсхүл оруулж болно
  5. Хоёр түүнээс дээш функцуудын нийлбэр, ялгаварын тодорхойгүй интеграл эдгээр функцуудын тодорхойгүй интегралын нийлбэр, ялгавартай тэнцүү

Энд нэг зүйлийг тодруулах хэрэгтэй. Бид уламжлал олохыг - дифференциалчлах, интегралыг олохыг - интегралчлах гэдгийг мэдсэн Тэгвэл интеграл доорх илэрхийлэлд байгаа dx -г дифферанциалын тэмдэг буюу дифференциал гэж нэрлээд байгаа. 2-р шинжид энэ тухай бас гарсан.
Тодорхойлолтын дагуу функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэдэг бөгөөд гэж үзэж болно. Их энгийнээр тайлбарлах гээд үзье.

Шинэ хувьсагч оруулах арга нь интегралчлах үндсэн аргуудын нэг. Орлуулга хийгээд шинэ хувьсагч оруулан ирэхэд интеграл доорх функцийн dx (x- ийн дифференциал) шинэ хувьсагчийн дагуу функц агуулах болдог. Энэ үед дифференциалыг тооцох хэрэгтэй болдог.

Дифференциалыг нээх дүрэм

Дифференциал нээнэ гэдэг нь дифференциалд байгаа функцийн уламжлалыг олохыг хэлнэ. Өөрөөр хэлбэл d тэмдгийг араас хаалтанд байгаа илэрхийллийн уламжлалыг олоод илэрхийлэлд байгаа хувьсагчийн дифференциалаар үржин өгөх юм. Алхам бүрээр нь авч үзвэл

  • d тэмдгийг арилгана
  • хаалтны баруун дээр уламжлалын тэмдэгийг тавина
  • илэрхийллийн ард dx үржигдхүүнийг нэмэн өгнө.

Жишээ нь Цаашдаа интеграл бодоход маш хэрэгтэй болдог тул жишээтэй харьцуулаад сайн тогтоогоод аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4489 Нийтийн

Шугам гэдэг нь бие биетэйгээ дараалан байрласан цэгүүдийн олонлогоор үүсэх геометрийн дүрс.
Ямар ч шугамыг тодорхой замаар шилжиж буй цэгийн хөдөлгөөний мөр гэж үзэж болно. Жишээ нь цаасан дээр харандаагаар дарвал түүний бал цаасан дээр цэг буюу мөрийг үүсгэнэ. Харандааг цааш цаасан дээгүүр хөдөлгөвөл хөдөлгөөний замаар бал бие биетэйгээ дараалан байрлах цэгүүдийн олонлогийг үүсгэснээр шугам зурагдана.
Геометрийн шугамд өргөн гэсэн ойлголт байдаггүй гэдгийг тогтоон аваарай.

  Нээгдсэн тоо: 3364 Бүртгүүлэх

Бид өмнөх хичээлийн сүүлд 3ax+9x-8x-24 илэрхийллийг үржвэрт задлах гээд ерөнхий үржигдхүүн олохгүй мухардал орсон билээ. Аргуудыг дарааллынх нь дагуу хэрэглэхийг илүү гэдгийг Бодлого бодож сурах нь I хичээлд дурдсан. Илэрхийллийг эхний арга буюу ерөнхий үржигдхүүнийг хаалтнаас гаргах аргаар эмхэтгэж болохгүй байгаа тул 2-р арга бүлэглэхийг хэрэглэх гээд үзье.

  Нээгдсэн тоо: 7220 Нийтийн

A / B хэлбэрийн илэрхийллийг алгебрын бутархай гэнэ. Энд A болон B нь тоо, нэг гишүүнт, олон гишүүнт байж болно. A-г хүртвэр, B-г хуваарь гэнэ. Арифметикийн бутархай нь алгебрын бутархайн нэг хэлбэр юм.
 
Бутархайг хураах

  Нээгдсэн тоо: 813 Төлбөртэй

Рационал тоо гэдэг нь өөртөө бүхэл болон бутархай тоонуудыг агуулсан олонлог юм.
Рационал тооны олонлогийг Q үсгээр тэмдэглэдэг.

Санамж: Алгебрийн хичээлүүд болон бодлогод тоонуудын олонлогуудын тэмдэглэгээг өргөнөөр ашигладаг тул тэдгээрийг цээжлэхийг зөвлөе

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 287

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 365

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 335

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 428

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 477

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 502

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 592

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 682

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 717

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1550

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2011

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 989