Тодорхойгүй интеграл

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

Үүнээс гадна бидэнд Уламжлалын үндсэн жагсаалтууд , Үндсэн интегралуудын жагсаалтуудын  томьёонууд хэрэгтэй.
Тодорхойгүй интегралд юу нь хэцүү вэ? гэвэл дифференциалчлахад тогтсон 5 дүрэм, уламжлалын үндсэн жагсаалт гээд үйлдлийн нилээд нарийн алгоритм байдаг бол интегралд бүгд өөр интегралчлах хэдэн арван дүрэм үйлчилдэг. Гэхдээ бид үндсэн цөөн тооны дүрмийг, үндсэн интегралуудын жагсаалтуудтай ашиглаж сурсан байхад хангалттай.
Интегралын хүснэгтээс харвал уламжлалынхтай адилаар интегралчлах хэдэн дүрэм, зарим элементар функцийн интегралуудыг харна. Хүснэгтээс ямарч интеграл

хэлбэртэй байгааг амархан харж болохоор. Энэ бичлэгийг нарийвчлан ойлгохоос эхлэе.

  • - интегралын тэмдэг.
  • f(x) - интеграл доорх функц
  • dx - дифферанциалын тэмдэг. Интегралын бичилт болон бодох үедээ энэ тэмдгийг орхиж болохгүй.
  • f(x)dx - интеграл доорх илэрхийлэл
  • F(x) - эх функц
  • F(x)+C - эх функцийн олонлог. Энд тогтмолд их анхаарал өгөөд байх хэрэггүй. Ямарч тодорхойгүй интегралын хариунд C тогтмолыг нэмж өгдөг.

Интегралын бичилт болон хүснэгтийн интегралуудыг дахин харвал тэнцүүгийн тэмдгийн зүүн тал нь F(x)+C гэсэн өөр функц болоод байгаа биз.
Эндээс тодорхой бус интегралыг бодно гэдэг нь тодорхой дүрмүүд болон хүснэгтээ ашиглан түүнийг F(x)+C гэсэн тодорхой функцэд шилжүүлэх гэж тодорхойлж болно.

Интегралын хүснэгтээс жишээ болгоод авъя. Энд интеграл гэж юу болох, эх функц юуг хэлэх гэсэн онолыг мэдээд байх шаардлага багатай. Яагаад томьёоны хувьд интеграл -cosx+C болон хувирч байгааг мэдэх албагүй. Ер нь интегралын хүснэгтийг өгөгдсөн томьёонууд гэж үзээд тогтоон авах нь зөв.
Дифференциалчлах, интегралчлах хоёр нь харилцан эсрэг үйлдлүүд гэдгээс ямарч эх функц зөв гарсан бол тэнцэл биелэгдэх ёстой. Өөрөөр хэлбэл зөв эх функцийг дифференциалчлахад интеграл доорх анхдагч функц гарах ёстой.
Тэгвэл интегралд дээрх томьёо хүчинтэй эсэхийг шалгая. Интегралын баруун хэсгээс уламжлал авбал гээд интеграл доорх функц гарч ирж байна. Эндээс эх функц дээр яагаад C тогтмол нэмэгдээд байгаа нь ч тодорхой болж ирлээ. Эргээд уламжлал авахад тогтмолууд тэг болох тул эх функц хичнээн ч байж болох нь байна.
Иймээс тодорхойгүй интегралыг бодно гэдэг нь ямар нэг функцийг олох биш эх функцийн бүх олонлогийг олохыг хэлнэ. зэрэг бүх функцууд бидний авч үзсэн хүснэгтийн интегралын шийд болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  1. Тодорхойгүй интегралаас авсан уламжлал интеграл доорх функцтэй тэнцүү.
  2. Тодорхойгүй интегралын дифференциал интеграл доорх илэрхийлэлтэй тэнцүү.
  3. Аливаа функцийн дифференциалын тодорхойгүй интеграл энэ функц болон дурын тотмолын нийлбэртэй тэнцүү
  4. Тогтмолыг интегралаас гаргах эсхүл оруулж болно
  5. Хоёр түүнээс дээш функцуудын нийлбэр, ялгаварын тодорхойгүй интеграл эдгээр функцуудын тодорхойгүй интегралын нийлбэр, ялгавартай тэнцүү

Энд нэг зүйлийг тодруулах хэрэгтэй. Бид уламжлал олохыг - дифференциалчлах, интегралыг олохыг - интегралчлах гэдгийг мэдсэн Тэгвэл интеграл доорх илэрхийлэлд байгаа dx -г дифферанциалын тэмдэг буюу дифференциал гэж нэрлээд байгаа. 2-р шинжид энэ тухай бас гарсан.
Тодорхойлолтын дагуу функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэдэг бөгөөд гэж үзэж болно. Их энгийнээр тайлбарлах гээд үзье.

Шинэ хувьсагч оруулах арга нь интегралчлах үндсэн аргуудын нэг. Орлуулга хийгээд шинэ хувьсагч оруулан ирэхэд интеграл доорх функцийн dx (x- ийн дифференциал) шинэ хувьсагчийн дагуу функц агуулах болдог. Энэ үед дифференциалыг тооцох хэрэгтэй болдог.

Дифференциалыг нээх дүрэм

Дифференциал нээнэ гэдэг нь дифференциалд байгаа функцийн уламжлалыг олохыг хэлнэ. Өөрөөр хэлбэл d тэмдгийг араас хаалтанд байгаа илэрхийллийн уламжлалыг олоод илэрхийлэлд байгаа хувьсагчийн дифференциалаар үржин өгөх юм. Алхам бүрээр нь авч үзвэл

  • d тэмдгийг арилгана
  • хаалтны баруун дээр уламжлалын тэмдэгийг тавина
  • илэрхийллийн ард dx үржигдхүүнийг нэмэн өгнө.

Жишээ нь Цаашдаа интеграл бодоход маш хэрэгтэй болдог тул жишээтэй харьцуулаад сайн тогтоогоод аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 8095 Бүртгүүлэх

Бид хавтгайн геометрт нумын урт l, радиус r ба харгалзах өнцөг α -нууд нь α=l/r гэсэн харьцаатай байдгийг үзсэн. Энэ томьёо нь өнцгийн радиан хэмжээг тогтоох үндэс болно. Хэрвээ l=r бол α=1 болох бөгөөд энийг α өнцөг 1 радиантай тэнцүү гээд α=1 рад. гэж тэмдэглэнэ. Эндээс дараах тодорхойлолт гарна.
Нумын урт ба радиус нь тэнцүү төв өнцгийг радиан гэнэ. (AmB=AO) /Зур. 1/ Иймээс өнцгийн радиан хэмжээс гэдэг нь дурын радиусаар татаж гаргасан өнцгийн талуудын дунд орших нумын уртыг нумын радиуст харьцуулсан харьцааг хэлнэ.

  Нээгдсэн тоо: 5190 Нийтийн

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

  Нээгдсэн тоо: 1188 Төлбөртэй

Тригнометрийн ямарч тэгшитгэлийг бодох үндсэн аргачлал бол анхдагч тэгшитгэлийг хувирган торигнометрийн энгийн тэгшитгэлүүдэд шилжүүлээд тэдгээрийн шийдийг олох байдаг. Иймээс тригнометрийн энгийн тэгшитгэлийн шийдийг цээжээр мэдэж байх хэрэгтэй. Энгийн тэгшитгэлийн шийдийг гаргаж буй аргачлалыг сайн ойлголгүй хүчээр цээжлсэнээс болоод тэгшитгэлүүдийн шийдүүдийг холих, тодорхой интервал дахь шийдийг тодорхойлох, орлуулгаас шийдийг олох гээд олон тохиолдолд асуудалд орох талтай.

Жич: Тригнометрийн энгийн тэгшитгэлийн шийдүүд хэрхэн гарч байгааг ойлгохгүйгээр шууд цээжилбэл та цаашид мартан тригнометр гэдэг ухагдхууныг мэддэггүй хүмүүсийн эгнээнд орно. Ихэнх хүмүүс энэ замаар явсан байдаг учраас математикийг хүнд хэцүү хичээл мэтээр ойлгон ярьдаг.

Хичээлээр cosx=a, sinx=a хэлбэрийн энгийн тэгшитгэлийн шийдийг хэрхэн тодорхойлохыг авч үзье.

  Нээгдсэн тоо: 6478 Төлбөртэй

Нэг шулуун дээр орших хоёр цэгээр хязгаарлагдсан шулууны хэсгийг хэрчим гэнэ. Хэрчмийн хязгаарыг тодорхойлох цэгүүдийг хэрчмийн төгсгөлүүд гэж нэрлэдэг. Хэрчмийн төгсгөлүүдийг цэгээр голдуу тэмдэглэдэг.

Хэрчмийг түүний төгсгөлүүдийн цэгүүдийг тэмдэглэн тавьсан латин том үсгүүдээр тэмдэглэнэ. Жишээ нь AB эсхүл BA

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 42

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 64

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 70

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 70

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 89

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 105

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 79

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 66

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 86

 
Энэ долоо хоногт

Арифметик прогресийн 5-р гишүүн 8,4 харин 10-р гишүүн 14,4 тэнцүү бол энэ прогресийн 22-р гишүүнийг ол.

Нээгдсэн тоо : 1088

 

Дарааллын эхний n гишүүний нийлбэр томьёогоор өгөгджээ. Хэрэв энэ дараалал геометр прогресс бол q -г ол, арифметик прогресс бол d -г ол.

Нээгдсэн тоо : 780

 

бол M·N=?

Нээгдсэн тоо : 1070