Тодорхойгүй интеграл

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

Үүнээс гадна бидэнд Уламжлалын үндсэн жагсаалтууд , Үндсэн интегралуудын жагсаалтуудын  томьёонууд хэрэгтэй.
Тодорхойгүй интегралд юу нь хэцүү вэ? гэвэл дифференциалчлахад тогтсон 5 дүрэм, уламжлалын үндсэн жагсаалт гээд үйлдлийн нилээд нарийн алгоритм байдаг бол интегралд бүгд өөр интегралчлах хэдэн арван дүрэм үйлчилдэг. Гэхдээ бид үндсэн цөөн тооны дүрмийг, үндсэн интегралуудын жагсаалтуудтай ашиглаж сурсан байхад хангалттай.
Интегралын хүснэгтээс харвал уламжлалынхтай адилаар интегралчлах хэдэн дүрэм, зарим элементар функцийн интегралуудыг харна. Хүснэгтээс ямарч интеграл

хэлбэртэй байгааг амархан харж болохоор. Энэ бичлэгийг нарийвчлан ойлгохоос эхлэе.

  • - интегралын тэмдэг.
  • f(x) - интеграл доорх функц
  • dx - дифферанциалын тэмдэг. Интегралын бичилт болон бодох үедээ энэ тэмдгийг орхиж болохгүй.
  • f(x)dx - интеграл доорх илэрхийлэл
  • F(x) - эх функц
  • F(x)+C - эх функцийн олонлог. Энд тогтмолд их анхаарал өгөөд байх хэрэггүй. Ямарч тодорхойгүй интегралын хариунд C тогтмолыг нэмж өгдөг.

Интегралын бичилт болон хүснэгтийн интегралуудыг дахин харвал тэнцүүгийн тэмдгийн зүүн тал нь F(x)+C гэсэн өөр функц болоод байгаа биз.
Эндээс тодорхой бус интегралыг бодно гэдэг нь тодорхой дүрмүүд болон хүснэгтээ ашиглан түүнийг F(x)+C гэсэн тодорхой функцэд шилжүүлэх гэж тодорхойлж болно.

Интегралын хүснэгтээс жишээ болгоод авъя. Энд интеграл гэж юу болох, эх функц юуг хэлэх гэсэн онолыг мэдээд байх шаардлага багатай. Яагаад томьёоны хувьд интеграл -cosx+C болон хувирч байгааг мэдэх албагүй. Ер нь интегралын хүснэгтийг өгөгдсөн томьёонууд гэж үзээд тогтоон авах нь зөв.
Дифференциалчлах, интегралчлах хоёр нь харилцан эсрэг үйлдлүүд гэдгээс ямарч эх функц зөв гарсан бол тэнцэл биелэгдэх ёстой. Өөрөөр хэлбэл зөв эх функцийг дифференциалчлахад интеграл доорх анхдагч функц гарах ёстой.
Тэгвэл интегралд дээрх томьёо хүчинтэй эсэхийг шалгая. Интегралын баруун хэсгээс уламжлал авбал гээд интеграл доорх функц гарч ирж байна. Эндээс эх функц дээр яагаад C тогтмол нэмэгдээд байгаа нь ч тодорхой болж ирлээ. Эргээд уламжлал авахад тогтмолууд тэг болох тул эх функц хичнээн ч байж болох нь байна.
Иймээс тодорхойгүй интегралыг бодно гэдэг нь ямар нэг функцийг олох биш эх функцийн бүх олонлогийг олохыг хэлнэ. зэрэг бүх функцууд бидний авч үзсэн хүснэгтийн интегралын шийд болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  1. Тодорхойгүй интегралаас авсан уламжлал интеграл доорх функцтэй тэнцүү.
  2. Тодорхойгүй интегралын дифференциал интеграл доорх илэрхийлэлтэй тэнцүү.
  3. Аливаа функцийн дифференциалын тодорхойгүй интеграл энэ функц болон дурын тотмолын нийлбэртэй тэнцүү
  4. Тогтмолыг интегралаас гаргах эсхүл оруулж болно
  5. Хоёр түүнээс дээш функцуудын нийлбэр, ялгаварын тодорхойгүй интеграл эдгээр функцуудын тодорхойгүй интегралын нийлбэр, ялгавартай тэнцүү

Энд нэг зүйлийг тодруулах хэрэгтэй. Бид уламжлал олохыг - дифференциалчлах, интегралыг олохыг - интегралчлах гэдгийг мэдсэн Тэгвэл интеграл доорх илэрхийлэлд байгаа dx -г дифферанциалын тэмдэг буюу дифференциал гэж нэрлээд байгаа. 2-р шинжид энэ тухай бас гарсан.
Тодорхойлолтын дагуу функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэдэг бөгөөд гэж үзэж болно. Их энгийнээр тайлбарлах гээд үзье.

Шинэ хувьсагч оруулах арга нь интегралчлах үндсэн аргуудын нэг. Орлуулга хийгээд шинэ хувьсагч оруулан ирэхэд интеграл доорх функцийн dx (x- ийн дифференциал) шинэ хувьсагчийн дагуу функц агуулах болдог. Энэ үед дифференциалыг тооцох хэрэгтэй болдог.

Дифференциалыг нээх дүрэм

Дифференциал нээнэ гэдэг нь дифференциалд байгаа функцийн уламжлалыг олохыг хэлнэ. Өөрөөр хэлбэл d тэмдгийг араас хаалтанд байгаа илэрхийллийн уламжлалыг олоод илэрхийлэлд байгаа хувьсагчийн дифференциалаар үржин өгөх юм. Алхам бүрээр нь авч үзвэл

  • d тэмдгийг арилгана
  • хаалтны баруун дээр уламжлалын тэмдэгийг тавина
  • илэрхийллийн ард dx үржигдхүүнийг нэмэн өгнө.

Жишээ нь Цаашдаа интеграл бодоход маш хэрэгтэй болдог тул жишээтэй харьцуулаад сайн тогтоогоод аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 731 Төлбөртэй

Алгебрт эерэг, сөрөг тоонууд гэсэн ухагдхуун орж ирснээр үржих хуваах үйлдэлд тэмдгийг тодорхойлохын тулд арай өөр дүрмийг ашигладаг. Үржих, хуваах үйлдлийн тухайд өөрчлөлт байхгүй ч тэмдгийг тодорхойлох аргачлал эхлээд сурагчдад хүндрэл үүсгэх талтай. Гэхдээ хичээлийг үзэн багахан дадлага хийхэд бүх зүйл энгийн гэдгийг ойлгоно.

  Нээгдсэн тоо: 7327 Нийтийн

Тэмдэглэгээ

a, b, c - талууд, A, B, C - өнцгүүд, p=(a+b+c)/2 - хагас периметр, h - өндөр, S - талбай, R - багтаасан тойргийн радиус, r - багтсан тойргийн радиус.

Косинусын теорем

  Нээгдсэн тоо: 2458 Нийтийн

Интеграл тооцох бодлого сурагчид гэлтгүй оюутнуудад нилээд төвөг учруулдаг. Сэдэв математикийн хичээлдээ хүндэвтэрт ордогийн дээр практикт интегралыг үндсэн дөрвөн үйлдэл шиг тэр болгон хэрэглээд байдаггүйтэй холбоотой. Гэсэн хэдий ч ямарч шатны шалгалт шүүлэгт интегралын бодлого орохгүй байна гэдэг ховор. Интегралыг тооцох ерөнхий аргачлал бол интеграл доорх функцийг хувирган хүснэгтийн интегралын хэлбэрт оруулах. Хэрвээ интеграл доорх функц хүснэгтийн буюу шийдэгдсэн интегралын хэлбэрт орвол бодолт хийгдэнэ.

  Нээгдсэн тоо: 4585 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 81

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 112

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 115

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 132

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 135

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 190

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 135

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 130

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 141

 
Энэ долоо хоногт

илэрхийллийг хялбарчил.

Нээгдсэн тоо : 1583

 

Нээгдсэн тоо : 634

 

prob09_163_01Зурагт өгсөн ABC гурвалжны AN=9, BM=12 байх медианууд перпендикуляр ба O цэгт огтлолцох бол ONCM дөрвөн өнцөгтийн талбайг ол.

Нээгдсэн тоо : 65