Тодорхойгүй интеграл

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

Үүнээс гадна бидэнд Уламжлалын үндсэн жагсаалтууд , Үндсэн интегралуудын жагсаалтуудын  томьёонууд хэрэгтэй.
Тодорхойгүй интегралд юу нь хэцүү вэ? гэвэл дифференциалчлахад тогтсон 5 дүрэм, уламжлалын үндсэн жагсаалт гээд үйлдлийн нилээд нарийн алгоритм байдаг бол интегралд бүгд өөр интегралчлах хэдэн арван дүрэм үйлчилдэг. Гэхдээ бид үндсэн цөөн тооны дүрмийг, үндсэн интегралуудын жагсаалтуудтай ашиглаж сурсан байхад хангалттай.
Интегралын хүснэгтээс харвал уламжлалынхтай адилаар интегралчлах хэдэн дүрэм, зарим элементар функцийн интегралуудыг харна. Хүснэгтээс ямарч интеграл

хэлбэртэй байгааг амархан харж болохоор. Энэ бичлэгийг нарийвчлан ойлгохоос эхлэе.

  • - интегралын тэмдэг.
  • f(x) - интеграл доорх функц
  • dx - дифферанциалын тэмдэг. Интегралын бичилт болон бодох үедээ энэ тэмдгийг орхиж болохгүй.
  • f(x)dx - интеграл доорх илэрхийлэл
  • F(x) - эх функц
  • F(x)+C - эх функцийн олонлог. Энд тогтмолд их анхаарал өгөөд байх хэрэггүй. Ямарч тодорхойгүй интегралын хариунд C тогтмолыг нэмж өгдөг.

Интегралын бичилт болон хүснэгтийн интегралуудыг дахин харвал тэнцүүгийн тэмдгийн зүүн тал нь F(x)+C гэсэн өөр функц болоод байгаа биз.
Эндээс тодорхой бус интегралыг бодно гэдэг нь тодорхой дүрмүүд болон хүснэгтээ ашиглан түүнийг F(x)+C гэсэн тодорхой функцэд шилжүүлэх гэж тодорхойлж болно.

Интегралын хүснэгтээс жишээ болгоод авъя. Энд интеграл гэж юу болох, эх функц юуг хэлэх гэсэн онолыг мэдээд байх шаардлага багатай. Яагаад томьёоны хувьд интеграл -cosx+C болон хувирч байгааг мэдэх албагүй. Ер нь интегралын хүснэгтийг өгөгдсөн томьёонууд гэж үзээд тогтоон авах нь зөв.
Дифференциалчлах, интегралчлах хоёр нь харилцан эсрэг үйлдлүүд гэдгээс ямарч эх функц зөв гарсан бол тэнцэл биелэгдэх ёстой. Өөрөөр хэлбэл зөв эх функцийг дифференциалчлахад интеграл доорх анхдагч функц гарах ёстой.
Тэгвэл интегралд дээрх томьёо хүчинтэй эсэхийг шалгая. Интегралын баруун хэсгээс уламжлал авбал гээд интеграл доорх функц гарч ирж байна. Эндээс эх функц дээр яагаад C тогтмол нэмэгдээд байгаа нь ч тодорхой болж ирлээ. Эргээд уламжлал авахад тогтмолууд тэг болох тул эх функц хичнээн ч байж болох нь байна.
Иймээс тодорхойгүй интегралыг бодно гэдэг нь ямар нэг функцийг олох биш эх функцийн бүх олонлогийг олохыг хэлнэ. зэрэг бүх функцууд бидний авч үзсэн хүснэгтийн интегралын шийд болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  1. Тодорхойгүй интегралаас авсан уламжлал интеграл доорх функцтэй тэнцүү.
  2. Тодорхойгүй интегралын дифференциал интеграл доорх илэрхийлэлтэй тэнцүү.
  3. Аливаа функцийн дифференциалын тодорхойгүй интеграл энэ функц болон дурын тотмолын нийлбэртэй тэнцүү
  4. Тогтмолыг интегралаас гаргах эсхүл оруулж болно
  5. Хоёр түүнээс дээш функцуудын нийлбэр, ялгаварын тодорхойгүй интеграл эдгээр функцуудын тодорхойгүй интегралын нийлбэр, ялгавартай тэнцүү

Энд нэг зүйлийг тодруулах хэрэгтэй. Бид уламжлал олохыг - дифференциалчлах, интегралыг олохыг - интегралчлах гэдгийг мэдсэн Тэгвэл интеграл доорх илэрхийлэлд байгаа dx -г дифферанциалын тэмдэг буюу дифференциал гэж нэрлээд байгаа. 2-р шинжид энэ тухай бас гарсан.
Тодорхойлолтын дагуу функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэдэг бөгөөд гэж үзэж болно. Их энгийнээр тайлбарлах гээд үзье.

Шинэ хувьсагч оруулах арга нь интегралчлах үндсэн аргуудын нэг. Орлуулга хийгээд шинэ хувьсагч оруулан ирэхэд интеграл доорх функцийн dx (x- ийн дифференциал) шинэ хувьсагчийн дагуу функц агуулах болдог. Энэ үед дифференциалыг тооцох хэрэгтэй болдог.

Дифференциалыг нээх дүрэм

Дифференциал нээнэ гэдэг нь дифференциалд байгаа функцийн уламжлалыг олохыг хэлнэ. Өөрөөр хэлбэл d тэмдгийг араас хаалтанд байгаа илэрхийллийн уламжлалыг олоод илэрхийлэлд байгаа хувьсагчийн дифференциалаар үржин өгөх юм. Алхам бүрээр нь авч үзвэл

  • d тэмдгийг арилгана
  • хаалтны баруун дээр уламжлалын тэмдэгийг тавина
  • илэрхийллийн ард dx үржигдхүүнийг нэмэн өгнө.

Жишээ нь Цаашдаа интеграл бодоход маш хэрэгтэй болдог тул жишээтэй харьцуулаад сайн тогтоогоод аваарай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3835 Бүртгүүлэх

Тэгш өнцөгт гурвалжны талуудын харьцааг хурц өнцгийн тригнометрийн функцүүд гэдэг. / Зур. 2 /

  Нээгдсэн тоо: 738 Бүртгүүлэх

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг. ЕБС -д орсноос төгсөх хүртлээ тооны буюу математикийн хичээлийг үздэг. Математикийн нэг ухагдхуун нөгөөгийнхөө суурь болоод явдаг тул бүр эхнээс нь буюу арифметикийг сайн ойлгосон байх шаардлагатай. Бага хүүхдүүдэд зааж байгаа тул ухагдхуунууд энгийн тул хүмүүс арифметикт нэг их анхаардаггүй нь хүүхдийн хоцрогдолын суурийг тавьдаг ч байж мэдэх тул сайтын арифметиктэй холбоотой хичээлүүдийг хүүхэдтэйгээ цуг үзэхийг зөвлөе. 

Хичээлээр тоо нэмэгдүүлэх ухагдхууныг авч үзье. Тоог хэдэн нэгжээр, хэд дахин эсхүл тодорхой хувиар нэмэгдүүлж болно.

  Нээгдсэн тоо: 2514 Төлбөртэй

Элсэлтийн ерөнхий шалгалт дээр тодорхой бус интегралыг олох бодлогууд ирсэн байдаг. Гэхдээ ийм төрлийн бодлого цөөн тооны байдаг ч ЕБС-ийн математикийн хичээлийн программд багтдаг сэдэв учраас тодорхой бус интегралыг бодож чаддаг байх хэрэгтэй. Их дээд сургуулийн эхний курст яг энэ сэдвээр дээд математикийн хичээлүүдтэй тулах учраас хичээлд үзэх аргуудыг мэдэж байх нь шалгалт гэлтгүй цаашдаа хэрэг болно.
Ерөнхий шалгалтын бодлогуудад байгаа тодорхойгүй интеграл олох бодлогууд маш энгийн амархан бараг л хүснэгтийн интеграл байсан гэхэд хилсдэхгүй. Ийм хөнгөн даалгавар дээр сэдвийн аймшигтай нэрнээс сүрдээд оноо алдана гэдэг байж болохгүй.

  Нээгдсэн тоо: 751 Төлбөртэй

Нэгээс илүү үйлдэлтэй тоон илэрхийллийн утгыг зөв тооцоход арифметикийн үйлдлүүдийг гүйцэтгэх дарааллыг мэдэж байх ёстой. Үйлдлийн дараалал математикийн суурь ойлголтын нэг тул сайн ойлгон сурсан байх хэрэгтэйг зөвлөе.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 131

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 193

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 160

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 286

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 316

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 322

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 388

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 389

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 467

 
Энэ долоо хоногт

KLM суурьтай, KL=1, KK1=d талтай KLL1K1 тэгш өнцөгт хажуу бүхий KLMK1L1M1 призм өгөгджээ. KL_|_KM, LMM1 , KMM1 хавтгайнуудын хоорондын өнцөг 60°, бол утганд призмд түүний бүх талыг шүргэх шаарыг багтааж болно.

Нээгдсэн тоо : 1803

 

тоонд хуваахад гарах тооны аравтын бичлэгт "0" цифр хэдэн удаа орох вэ?

Нээгдсэн тоо : 1506

 

Нээгдсэн тоо : 1488