Зөв олон талт

Орой бүрд нь ижил тоотой талууд нийлдэг, бүх тал нь хоорондоо тэнцүү зөв олон өнцөгтөөс бүрдсэн олон талтыг зөв олон талт гэнэ.
Зөвхөн таван гүдгэр, дөрвөн гүдгэр биш зөв олон талт мэдэгдэж байгаа. Гүдгэр зөв олон талтууд:

  • тетраэдер / 4 талт  Зур. 99/
  • куб буюу гексаэдер / 6 талт Зур. 100/
  • октаэдер / 8 талт  Зур. 101/
  • додекаэдер / 12 талт  Зур. 102/
  • икосаэдер / 20 талт  Зур. 103/

Дурын зөв олон талтад шаарыг багтааж болно. Мөн түүнчлэн тэдгээрийг шаарт багтааж болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 8259 Нийтийн

Тэгш зэргийн язгуур нь нэмэх, хасах гэсэн хоёр утгатай байдгийг бид мэднэ.
Учир нь (+5)2=25 бас (-5)2=25 байдаг.

Эерэг a тооны n зэргийн арифметик язгуур гэдэг нь ямар нэгэн эерэг тооны n зэрэг нь a тоотой тэнцүү байхыг хэлнэ.
Тооны n зэргийн алгебрын язгуур гэдэг нь энэ тооны бүх язгуурын олонлогийг хэлнэ. Тэгш зэргийн алгебрын язгуур нь эерэг, сөрөг хоёр утгатай байна.

  Нээгдсэн тоо: 16391 Нийтийн

Энэ хичээлээр логарифм тэгшитгэлүүдийг бодох аргуудын талаар авч үзнэ. Хувьсагч утга нь логарифмын тэмдэгт байрлах тэгшитгэлийг логарифм тэгшитгэл гэдэг. Жишээ нь
Логарифмын үндсэн адитгал, чанаруудын талаар Логарифм хичээлээс үзээрэй. Үүнээс гадна логарифм тэгшитгэлүүдийг бодож сурахад Үндсэн томьёонуудыг мэддэг байх хэрэгтэй. Логарифм тэгшитгэлийг бодох үндсэн дүрэм бол

  Нээгдсэн тоо: 6932 Бүртгүүлэх

Натурал тоон цувааг авч үзье.

1, 2, 3, … ,n-1, n, …

Энэ цувааны тоо бүрийг тодорхой дүрмийн дагуу un тоогоор соливол бид шинэ тоон цувааг гаргана

Энэ шинэ гарсан цувааг тоон дараалал гэдэг. un тоог тоон цувааны ерөнхий гишүүн гэнэ.
Тоон цувааны жишээнүүд

2, 4, 6, … , 2n, …;
1, 4, 9, 16, 25, … , n², …;
1, 1/2, 1/3, 1/5, … , 1/n, …;

  Нээгдсэн тоо: 2746 Бүртгүүлэх

Тойргийн төвтэй давхцсан оройтой тойргийн хоёр радиусаар үүсэх өнцгийг тойргийн төв өнцөг гэдэг.

Зураг 1 -д тойргийн төв O болон AO, OB радиусуудаар үүссэн O оройтой хоёр төв өнцгийг үзүүлсэн. Төв өнцгийн дотоод хэсэгт орших нумыг тухайн төв өнцөгт харгалзах нум гэнэ. AOB төв өнцөгт A ба B төгсгөлтэй хоёр нум харгалзана. 2-р зураг.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 15

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 21

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549