Зарим тодорхой интегралууд

Зарим тодорхой интегралууд



Хувьсах дээд хязгаартай интеграл

[a , b] хэрчимд f(x) тасралтгүй функц өгөгдсөн гэе. Тэгвэл дурын хувьд

гэсэн хувьсах дээд хязгаартай интегралаар /тэнцлийн баруун хэсэг/ өгөгдсөн функц байна.
Хувьсах дээд хязгаартай интегралд тодорхой интегралын бүх шинж чанар хүчинтэй үйлчилнэ.

Жишээ
Шулуун зам дээр хувьсах хүч нь x≥0 үед f(x)=6x2+5 дүрмээр өөрчлөгддөг бол энэ хүчний ажил ямар дүрмээр өөрчлөгдөх вэ?

Бодолт
Шулуун замын [0 , x] хэрчимд f(x) хүчний ажил нь
тэнцүү.
Тэгэхлээр ажил нь F(x)=2x3+5x дүрмээр өөрчлөгдөнө.
үед хувьсах дээд хязгаартай интегралын тодорхойлолт ба интегралын шинжээс гарна.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4270 Төлбөртэй

Өнцөг, тэдгээрийн төрлүүдийг маш сайн ойлгосон байхыг зөвлөе. Өнцгүүд хэмжээнээсээ хамааран тодорхой төрлүүдэд хуваагдахын дээр харилцан байрлалаараа төрлүүдэд хуваагдаж болохыг Өнцгийн төрлүүд хичээлд үзсэн. Энэ хичээлэээр бодлогод ихээр ашигладаг хамар болон босоо өнцгүүдийн талаар үзэх болно.

Өнцгийн төрөл, оноосон нэр, харагдах байдал, шинж, чанарыг мэдэхгүй бол бодлогын нөхцлийг ойлгож чадахгүйгээс үүдэн таахаас өөр арга үлдэхгүйд хүрнэ. Шалгалт шүүлэгийг тест хэлбэрээр авч байвал таагаад азаа үзэж болох ч ам эсхүл бичгээр шалгагдвал дуугүй зогсох, хоосон цаас өгөхөөс өөр замгүй. Иймээс сайтад тавигдсан онолын хичээлүүдийг үзэхийг зөвлөе.

  Нээгдсэн тоо: 565 Бүртгүүлэх

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Байр сэлгэх

Үржигдхүүн болон үржигчийн байрыг солиход үржвэр өөрчлөгдөхгүй нь доорх зураг дээрх однуудын тоог гаргаж буй хоёр аргаас харагдана.

arif05_02_01

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл тул дээрх зураг дээрх однуудын нийт тоог 3·4 эсхүл 4·3 үржвэрээр олох боломжтой. Үржигдхүүн болон үржигчийн байрыг солих боломжтой тул тэдгээрийг үржигдхүүнүүд гэж ч бас нэрлэдэг.

  Нээгдсэн тоо: 7478 Нийтийн

Бодлого бодохыг юу гэж ойлгох вэ? Бидний ихэнх нь бодлогыг ухаантай хүмүүс л боддог гэж ойлгоод байдаг. Математикийн шинжлэх ухаанд шийдэгдээгүй асуудлууд олон бий. Эдгээрийн шийдлийг гарган теорем, дүрэм батлах зэрэг нь үнэхээр ухаантай хүмүүсийг ажил. Энэ бол зөвхөн математикийн ухаанд ч биш бүхий л салбарт ийм жамтай. Харин эдгээр суут хүмүүсийн гаргасан шийдлийг хүн бүр өдөр тутмын амьдралдаа байнга ашиглаж байдгаа тэр бүр мэдээд байдаггүй. Жирийн хүмүүсийн хувьд математикийн бодлого бодно гэдэг нь ердөө эрдэмтэн мэргэдийн гаргасан шийдлийг ашиглах л юм. Түүнээс шинээр ямар нэгэн арга зохиогоод шийдэл гаргаад байх ерөөсөө биш. Бодлого бодох гэдэг нь компьютер ашиглах, гар утасны функцээ ажлуулах, машин жолоодохтой ижил ердийн ажил.

  Нээгдсэн тоо: 14478 Төлбөртэй

Квадрат тэгшитгэлийн бодолтын D<0 / энд D нь квадрат тэгшитгэлийн дискриминант / үед шинэ төрлийн тооны хэрэгцээ гарч ирсэн. Удаан хугацаанд эдгээр тоонуудыг бодит хэрэгцээ гараагүй байснаас тэдгээрийг хуурмаг тоо гэж нэрлэж байлаа. Одоо эдгээр тоо нь физик, цахилгаан техник, аэро болон гидродинамикт зэрэгт маш өргөн хэрэглэгээтэй болсон. Комплекс тоог a+bi хэлбэрээр бичдэг. Энд a ба b нь бодит тоо, харин i нь хуурмаг нэг буюу i²=-1. a тоог комплекс тооны абсцисс, харин b тоог ординат гэдэг. a+bi ба a-bi хоёр комплекс тоог хос комплекс тоо гэдэг.

Үндсэн тохиролцоо

  • Бодит a тоог a+0i эсвэл a-0i гэсэн комплекс хэлбэрээр бичиж болно. Жишээ : 5+0i эсвэл 5-0i бичлэг нь 5 гэсэн тоог илэрхийлнэ.
  • 0+bi комплекс тоог цэвэр хуурмаг тоо гэнэ. bi бичлэг нь 0+bi гэснийг илэрхийлнэ.
  • a+bi ба c+di хоёр комплекс тооны a=c , b=d байвал эдгээр тоог тэнцүү гэнэ. Эсрэг тохиолдолд комплекс тоонуудыг тэнцүү биш гэнэ

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 292

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 369

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 339

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 432

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 481

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 505

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 599

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 690

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 726

 
Энэ долоо хоногт

a ба b катеттай тэгш өнцөгт гурвалжин ерөнхий тэгш өнцөгтэй квадратыг багтаасан бол квадратын периметрийг ол.

Нээгдсэн тоо : 1133

 

функцийн графикийн (0,-1) цэгт татсан шүргэгч шулуун ба координатын тэнхлэгүүдээр хашигдсан мужийн талбайг ол.

Нээгдсэн тоо : 749

 

тэнцэтгэл бишийн хамгийн их бүхэл шийдийг ол.

Нээгдсэн тоо : 820