Хуурмаг ба комплекс тоо

x2=a гэсэн дутуу квадрат тэгшитгэлийг авч үзье. Энд a - тодорхой тоо. Энэ тэгшитгэлийн шийд нь

болно.

Энд гурван тохиолдол гарна.

1. Хэрвээ a=0 бол x=0
2. Хэрвээ a нь эерэг тоо бол тэгшитгэл эерэг, сөрөг хоёр шийдтэй.

Жишээ
тэгшитгэл нь 5, -5 гэсэн хоёр шийдтэй. Шийдийг дараах хэлбэрээр гэж бичдэг.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5921 Бүртгүүлэх

үед a цэгийн орчимд дифференциалчлагддаг f(x), g(x) функцуудын хувьд
эсвэл, эсвэл хязгаар байна.
нөхцлүүд биелж байвал байна.

  Нээгдсэн тоо: 1332 Төлбөртэй

Тригнометрийн ямарч тэгшитгэлийг бодох үндсэн аргачлал бол анхдагч тэгшитгэлийг хувирган торигнометрийн энгийн тэгшитгэлүүдэд шилжүүлээд тэдгээрийн шийдийг олох байдаг. Иймээс тригнометрийн энгийн тэгшитгэлийн шийдийг цээжээр мэдэж байх хэрэгтэй. Энгийн тэгшитгэлийн шийдийг гаргаж буй аргачлалыг сайн ойлголгүй хүчээр цээжлсэнээс болоод тэгшитгэлүүдийн шийдүүдийг холих, тодорхой интервал дахь шийдийг тодорхойлох, орлуулгаас шийдийг олох гээд олон тохиолдолд асуудалд орох талтай.

Жич: Тригнометрийн энгийн тэгшитгэлийн шийдүүд хэрхэн гарч байгааг ойлгохгүйгээр шууд цээжилбэл та цаашид мартан тригнометр гэдэг ухагдхууныг мэддэггүй хүмүүсийн эгнээнд орно. Ихэнх хүмүүс энэ замаар явсан байдаг учраас математикийг хүнд хэцүү хичээл мэтээр ойлгон ярьдаг.

Хичээлээр cosx=a, sinx=a хэлбэрийн энгийн тэгшитгэлийн шийдийг хэрхэн тодорхойлохыг авч үзье.

  Нээгдсэн тоо: 12691 Нийтийн

Дифференцал

Функцын уламжлал , аргументын өөрчлөлт ийн үржвэрийг функцын дифференциал гэнэ. 
/Зур. 2 / дээр дифференциалын геометр утгыг үзүүллээ. Энд df=CD

  Нээгдсэн тоо: 3881 Төлбөртэй

Уламжлал.

Ямар нэгэн f(x) функцын цэгүүд дээрх утгуудыг авч үзье. аргументын өөрчлөлт гэх ба аргументын бага хэмжээний өөрчлөлтийг үзүүлнэ. Цэгүүд дээрх функцын утгын ялгаварыг функцын өөрчлөлт гэдэг.
хязгаарыг x0 цэг дээрх f(x) функцын уламжлал гэнэ.
Хэрвээ энэ хязгаар нь утгатай байвал f(x) функцыг x0 цэг дээр дифференциалчлагддаг гэнэ. Функцын уламжлалыг
гэж тэмдэглэдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 128

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 190

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 158

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 284

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 313

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 320

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 385

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 386

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 461

 
Энэ долоо хоногт

Нээгдсэн тоо : 746

 

Аяга, стакан, ваар, лаазанд сүү, ундаа, квас, ус байжээ. Аяганд ус, сүү байхгүй, ундаатай сав ваар болон квастай савны дунд, лаазанд ундаа, усны аль нь ч байхгүй, стакан лааз ба сүүтэй савтай зэрэгцэн байрласан бол ямар саванд ямар шингэнийг хийсэн бэ.

Жич: Маш сонирхолтой гоё бодлого. Оролдоод үзээрэй.

Нээгдсэн тоо : 1074

 

илэрхийллийн хялбарчил.

Нээгдсэн тоо : 325