Нийлбэрийг тоогоор, тоог нийлбэрээр үржих

Арифметикт суралцаж буй сурагчид арифметикийн үндсэн дөрвөн үйлдлийн дүрэм болоод үйлдлүүдийг оновчтой хурдан хийх аргыг маш сайн эзэмших хэрэгтэй. Эдгээр дүрэм, аргачлалууд алгебрийн илэрхийллийн хувиргалтуудын суурь болдог гэдгийг санаарай. Дүрмүүд энгийн тул сурагчид болон эцэг эхчүүд нэг их анхаарахгүй өнгөрөөснөөс болоод алгебр орж эхлэхэд суурь дүрмүүдээ мэдэхгүйгээс үүдэн хоцрогдол үүсэх цаашлаад математикийн хичээлд дургүй болох шалтгаан ч болох эрсдэлтэй.

Нийлбэрийг тоогоор, тоог нийлбэрээр үржих үйлдлийг хоёр аргаар хийж болно.

1-р арга. Эхлээд нийлбэрийг олоод гарсан үр дүнг тоогоор үржүүлнэ.
Жишээ нь  (4 + 5) · 3 илэрхийллийн утгыг ол. Аргын дагуу эхлээд хаалтанд доторх 4 ба 5 -ын нийлбэрийг олвол 4 + 5 = 9 гарна. Одоо үр дүнг 3 -аар үржүүлбэл 9 · 3 = 27 гарна.  (4 + 5) · 3 = 9 · 3 = 27 гэсэн үг.

2-р арга. Нийлбэрийн бүрдүүлэгч бүрийг тухайн тоогоор үржүүлээд гарсан үр дүнгүүдийг нэмэж болно.
(4 + 5) · 3 илэрхийллийн утгыг олох жишээг авч үзье. Аргын дагуу нийлбэрийн бүрдүүлэгч бүрийг тухайн тоогоор үржүүлбэл 4 · 3 = 12; 5 · 3 = 15 болно. Гарсан үр дүнгүүдийн нийлбэрийг олбол 12 + 15 = 27 гэж гарна. Үйлдлийг нэг мөрөөр хийвэл (4 + 5) · 3 = 4 · 3 + 5 · 3 = 27 гэсэн үг.  

Нийлбэрийг тоогоор, тоог нийлбэрээр үржих үйлдлийг

(a + b) · c = a · c + b · c

ерөнхий томьёогоор илэрхийлж болно. Энэ томьёо нь үржвэрийн гишүүнчлэн үржүүлэх дүрэм юм.

Аргуудыг үржүүлэх үйлдлийг амархан гүйцэтгэхэд ашиглах боломтой.

Жишээ
(4 + 6) · 5;  (4 + 3) · 5 илэрхийллүүдийн утгыг ол.

Бодолт
Эхний илэрхийллийн утгыг 1-р аргаар (4 + 6) · 5 = 10 · 5 = 50 харин хоёрдахь илэрхийллийн утгыг 2-р аргаар (4 + 3) · 5 = 4 · 5 + 3 · 5 = 20 + 15 = 35 гэж олох нь амар.

Нийлбэрийг тоогоор, тоог нийлбэрээр үржих үйлдлийг хийхдээ  

  • Нийлбэр бүхэл үр дүн өгөхөөр бол 1-р аргыг
  • Нийлбэрийн бүрдүүлэгч бүрийг тоогоор үржүүлэхэд бүхэл үр дүн өгөхөөр бол 2-р аргыг

ашиглавал илүү хурдан алдаагүй тооцох боломжтой.

Үржвэрийн гишүүнчлэн үржүүлэх дүрмийг хоёр оронтой тоог нэг оронтой тоогоор үржүүлэх үйлдэлд хэрэглэх боломжтой.

Хоёр оронтой тоог нэг оронтой тоогоор үржүүлэхдээ хоёр оронтой тоог оронгийн бүрдүүлэгчээр нь салган нийлбэр болгоод нийлбэрийг нэг оронтой тоог үржүүлнэ.

Жишээ нь 32 · 5 илэрхийллийн утгыг олохын тулд эхлээд 32 -ийг оронгийн бүрдүүлэгчээр нь задлан 30 + 2 нийлбэр болгоно. Өөрөөр хэлбэл 3 аравт, 2 нэгжийн нийлбэр болгоно. Дараа нь 30 + 2 нийлбэрийг 5 -аар үржүүлэх буюу (30 + 2) · 5 үржвэрийг олно. Гишүүнчлэн үржүүлэх дүрмээр (30 + 2) · 5 = 30 · 5 + 2 · 5 = 150 + 10 = 160 гэж гарна.
Нэг оронтой тоог хоёр оронтой тоогоор үржүүлэх жишээ нь 3 · 24 тохиолдолд үржихийн байр солих дүрмээр үржигдхүүнүүдийн байрыг солиод  3 · 24 = 24 · 3 = (20 + 4) · 3 = 20 · 3 + 4 · 3 = 60 + 12 = 72 гэж тооцож болно. Эсхүл 3 · 24 = 3 · (20 + 4) =  3 · 20 + 3 · 4 = 60 + 12 = 72 гэсэн ч болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3745 Төлбөртэй

Тригнометрийн функцуудийн чанарыг сайн мэдэж байх нь бодлого бодоход ихээхэн тустай. Чанарыг сайн ойлгоогүйгээс бодлогын шийдийг тодорхойлох, илэрхийлэл хувиргах, томьёонуудыг хэрэглэхдээ алдаа гаргах өндөр магадлалтай. Сайтад тавигдсан тригнометр сэдвийн бүх хичээлүүдийг сайтар үзэн холбогдох бодлогуудын бодолтыг ойлгосон байхад танд энэ сэдвээс айх зүйл байхгүй. Ингээд хичээлээ функцийн тэгш, сондгой чанарын тухай тодорхойлолтоос эхлэе.

  Нээгдсэн тоо: 239 Бүртгүүлэх

Хавтгай дээрх ямар нэгэн A цэг болон a шулууны хувьд уг хавтгайд a шулуунтай харьцангуй тэгш хэмтэй зөвхөн нэг A1 цэг оршино. Энэхүү a шулууныг хавтгай дээрх a тэнхлэгтэй тэнхлэгийн тэг хэмийн тодорхойлогч гэж ярьдаг. Хэрвээ тэнхлэгийн тэгш хэм өгөгдсөн бол хавтгай дээрх дүрс бүрт a тэнхлэгтэй харьцангуй тэгш хэмтэй дүрс оршино.

  Нээгдсэн тоо: 7904 Нийтийн

Тэнцэтгэл бишийг бодох бодлого элсэлтийн ерөнхий шалгалтанд орж ирэх нь гарцаагүй. Олон гишүүнт, логарифм, тригнометр, рационал, ирррационал гэх мэтээр тэнцэтгэл бишүүд олон төрлийнх байдаг. Сурагчид тэнцэтгэл биш тэр тусмаа иррационал тэнцэтгэл бишийг бодохдоо тодорхой хүндрэлтэй тулгардаг тул энэ хичээлээр иррационал тэнцэтгэл бишийг бодох тухай авч үзье. Язгуур доор функцыг агуулсан тэнцэтгэл бишийг иррационал тэнцэтгэл биш гэдэг. Хамгийн ихээр тохиолддог иррационал тэнцэтгэл бишийн хэлбэрүүд тэдгээрийн бодолтын талаар авч үзье.

  Нээгдсэн тоо: 27028 Нийтийн

Хаалттай тахир шугаман дүрсүүд периметр, талбайтай байдаг. Гурвалжин ч хаалттай тахир шугамаар үүсдэг дүрс тул хичээлээр гурвалжны периметр, талбайн талаар авч үзье.

Жич: Геометрийн бодлогод периметр, талбайг ол гэсэн нөхцөл байхаас тухайн ухагдхуун гэж юу болох хэрхэн тооцохыг та өөрөө мэдэж байхыг шаардана. Ухагдхууныг мэдэхгүй, яаж тооцохыг мэдэхгүй бол бодлогыг бодохгүй л гэсэн үг.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 127

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 190

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 195

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 213

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 210

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 290

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 222

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 216

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 219

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2832

 

20 хувийн концентрацитай 18 гр уусмал дээр концентрацийг нь 4 хувиар нэмэгдүүлэхийн тулд 26 хувийн концентрацитай хичнээн грамм уусмал нэмж хийх шаардлагтай вэ?

Нээгдсэн тоо : 1265

 

тэгшитгэлийн шийдийг ол.

Нээгдсэн тоо : 1381