Функцын шинжилгээ

Функцын дифференциалчлал тасалдалгүй байдлын хоорондын холбоо

Ямар нэг цэг дээр f(x) функц нь дифференциалчлагдаж байвал тэр цэгт функц тасралтгүй байна. Эсрэгээсээ энэ нь буруу байдаг. Тасралтгүй функц нь уламжлалгүй байж болно.
Мөрдлөг. Хэрвээ функц нь ямар нэгэн цэг дээр тасарч байвал энэ цэг дээр функц нь уламжлалгүй.

Жишээ
y=|x| функц нь /Зур. 3/ тасралтгүй. Гэвч x=0 цэгт функцын график нь шүргэгчгүй тул уламжлал байхгүй.

Материалыг тусгай эрхтэй хэрэглэгч үзнэ.

request_quoteТусгай эрх авах

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1574 Бүртгүүлэх

Бодлого бодохдоо квадратуудын ялгавар , кубуудын ялгавар томьёонуудыг ихээр ашигладаг. Тэгвэл дөрөв, тав гэх мэтээр n зэргийн ялгаваруудад тохирох

ерөнхий томьёо байдөг бөгөөд хичээлээр энэ томьёоны гаргалгааг сурцгаая.

  Нээгдсэн тоо: 17710 Нийтийн

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

  Нээгдсэн тоо: 16916 Нийтийн

Энэ хичээлээр логарифм тэгшитгэлүүдийг бодох аргуудын талаар авч үзнэ. Хувьсагч утга нь логарифмын тэмдэгт байрлах тэгшитгэлийг логарифм тэгшитгэл гэдэг. Жишээ нь
Логарифмын үндсэн адитгал, чанаруудын талаар Логарифм хичээлээс үзээрэй. Үүнээс гадна логарифм тэгшитгэлүүдийг бодож сурахад Үндсэн томьёонуудыг мэддэг байх хэрэгтэй. Логарифм тэгшитгэлийг бодох үндсэн дүрэм бол

  Нээгдсэн тоо: 6031 Төлбөртэй

ЭЕШ-нд магадлалтай холбоотой бодлого тогтмол ирсэн байдаг. Сэдэв нь шалгуулагчид нилээд асуудал үүсгэдэг нь магадлалын талаарх ойлголт дутуу байдагтай холбоотой. Сурах бичгүүд дээр магадлалын талаар ойлголтыг нэг бол маш хураангуй эсхүл хэтэрхий онолын талаас нь тайлбарласан байдаг нь сурагчид хүндрэл учруулдаг болов уу. Энэ хичээлээр магадлалын тухай ойлголтыг онолын бус энгийнээр тайлбарлах гээд оролдоё. За ингээд хичээлдээ орцгооё.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 209

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 293

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 251

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 353

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 402

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 423

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 486

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 554

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 581

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1099

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 304