Тодорхойгүй интеграл

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Иймээс эх функцыг олох бодлого нь хязгааргүй олон шийдтэй. Энэ байдал нь тодорхойгүй интегралын тодорхойлолтод тусгалаа олсон байдаг.
X хэсэгт f(x) функц нь түүний эх функцуудын олонлог юм.

гэж бичдэг. Энд C - интегралчлалын тогтмол гэж нэрлэдэг дурын тогтмол болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  • Тогтмолыг интералын тэмдгийн гадна гаргаж болно.
  • Нийлбэрийн интеграл нь нэмэгдхүүн тус бүрийн интегралын нийлбэртэй тэнцүү.
  • Интегралын уламжлал нь интеграл доторх функцтай тэнцүү.
  • Функцын дифференциалын интеграл нь энэ функц дээр интегралчлалын тогтмолыг нэмсэнтэй тэнцүү.

 

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3346 Бүртгүүлэх

Бид өмнөх хичээлийн сүүлд 3ax+9x-8x-24 илэрхийллийг үржвэрт задлах гээд ерөнхий үржигдхүүн олохгүй мухардал орсон билээ. Аргуудыг дарааллынх нь дагуу хэрэглэхийг илүү гэдгийг Бодлого бодож сурах нь I хичээлд дурдсан. Илэрхийллийг эхний арга буюу ерөнхий үржигдхүүнийг хаалтнаас гаргах аргаар эмхэтгэж болохгүй байгаа тул 2-р арга бүлэглэхийг хэрэглэх гээд үзье.

  Нээгдсэн тоо: 992 Төлбөртэй

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд математикийн бүхий л сэдэв, ухагдхуунд хэрэглэдэг. Иймээс илэрхийлэл түүний хэлбэр, бичилт зэргийг сайн ойлгосон байхыг зөвлөе. Математикийн илэрхийллийг тоо болон үсгэн илэрхийлэл гэж хоёр том бүлэгт хуваадаг.

  Нээгдсэн тоо: 4791 Төлбөртэй

[a,b] хэрчимд өгөгдсөн энэ хэрчимдээ өөрийн тэмдгээ хадгалсан f(x) тасралтгүй функцыг авч үзье. /Зур. 8/ [a,b] хэрчим, x=a, x=b шулуун болон функцын графикаар хязгаарлагдсан дүрсийг муруй шугаман трапец гэдэг. Муруй шугаман трапецын талбайг олохдоо дараах теоремыг ашигладаг.
Хэрвээ f нь [a,b] хэрчимд тасралтгүй, сөрөг биш  функц байгаад F нь энэ хэрчимд түүний эх функц нь бол харгалзах муруй шугаман трапецын талбай S нь [a,b] хэрчим дэх эх функцын өөрчлөлттэй тэнцүү.

  Нээгдсэн тоо: 10577 Төлбөртэй

Зөв олон өнцөгт

Өнцгүүд нь тойрог дээр байрлах олон өнцөгтийг тойрогт багтсан /Зур. 54/, талууд нь тойргийн шүргэгч болж байгаа олон өнцөгтийг тойрог багтаасан /Зур. 55/ гэж нэрлэдэг.

Олон өнцөгтийн орой дээгүүр дайрч өнгөрч байгаа тойргийг багтаасан тойрог /Зур. 54/, олон өнцөгтийн талууд нь шүргэгч болж байгаа тойргийг багтсан тойрог /Зур. 55/ гэж бас нэрлэдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 253

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 337

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 304

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 401

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 448

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 475

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 557

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 630

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 667

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1412

 

тэгшитгэл бод.

Нээгдсэн тоо : 1017

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1062