Тодорхойгүй интеграл

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Иймээс эх функцыг олох бодлого нь хязгааргүй олон шийдтэй. Энэ байдал нь тодорхойгүй интегралын тодорхойлолтод тусгалаа олсон байдаг.
X хэсэгт f(x) функц нь түүний эх функцуудын олонлог юм.

гэж бичдэг. Энд C - интегралчлалын тогтмол гэж нэрлэдэг дурын тогтмол болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  • Тогтмолыг интералын тэмдгийн гадна гаргаж болно.
  • Нийлбэрийн интеграл нь нэмэгдхүүн тус бүрийн интегралын нийлбэртэй тэнцүү.
  • Интегралын уламжлал нь интеграл доторх функцтай тэнцүү.
  • Функцын дифференциалын интеграл нь энэ функц дээр интегралчлалын тогтмолыг нэмсэнтэй тэнцүү.

 

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6889 Нийтийн

Геометрийн тойрог, дугуй дүрсүүдийн ялгааг сайн ойлгодоггүй байх тохиолдол элбэг. Зарим сурагчид эдгээрийн ялгааг ойлгоогүйн улмаас бодлогын нөхцлийг ойлгохгүй бодох аргаа ч олохгүй байх тохиолддол гардаг. Тойрог, дугуйн ялгааг ойлгохын тулд эхлээд Тойрог хичээлийг үзэхийг зөвлөе.

  Нээгдсэн тоо: 4953 Төлбөртэй

Функцын дифференциалчлал тасалдалгүй байдлын хоорондын холбоо

Ямар нэг цэг дээр f(x) функц нь дифференциалчлагдаж байвал тэр цэгт функц тасралтгүй байна. Эсрэгээсээ энэ нь буруу байдаг. Тасралтгүй функц нь уламжлалгүй байж болно.
Мөрдлөг. Хэрвээ функц нь ямар нэгэн цэг дээр тасарч байвал энэ цэг дээр функц нь уламжлалгүй.

Жишээ
y=|x| функц нь /Зур. 3/ тасралтгүй. Гэвч x=0 цэгт функцын график нь шүргэгчгүй тул уламжлал байхгүй.

  Нээгдсэн тоо: 6114 Бүртгүүлэх

үед a цэгийн орчимд дифференциалчлагддаг f(x), g(x) функцуудын хувьд
эсвэл, эсвэл хязгаар байна.
нөхцлүүд биелж байвал байна.

  Нээгдсэн тоо: 17935 Нийтийн

x=sin y харьцаагаар x -ийн өгөдсөн утгаар y -ийг, y -ийн өгөдсөн утгаар x (|x|≤1) -ийг олж болно. Иймээс синусыг өнцгийн функцээс гадна өнцгийг синусын функц мэтээр авч үзэж болно. Үүнийг y=arcsin x / arcsin – арксинус гэж уншина / гэж бичиж болно. Жишээ нь, 1/2=sin 30°  гэхийн оронд 30°=arcsin 1/2 гэж бичиж болно. Сүүлийн бичлэгийн хувьд өнцгийг голдуу радианаар π/6=arcsin 1/2 гэж бичдэг.
Синус нь x тэй тэнцүү өнцгийг arcsin x гэнэ. arccos x, arctan x, arccot x, arcsec x, arccosec x функцүүд бүгдээрээ arcsin x тэй адилхан тодорхойлогдоно. Эдгээр функцүүд нь sin x, cos x, tan x, cot x, sec x, cosec x функцүүдтэй эсрэг харьцаатай байдаг тул тригнометрийн урвуу функцүүд гэдэг.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 281

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 359

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 328

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 423

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 470

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 497

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 587

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 673

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 707

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1549

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2006

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 988