Тодорхойгүй интеграл

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Иймээс эх функцыг олох бодлого нь хязгааргүй олон шийдтэй. Энэ байдал нь тодорхойгүй интегралын тодорхойлолтод тусгалаа олсон байдаг.
X хэсэгт f(x) функц нь түүний эх функцуудын олонлог юм.

гэж бичдэг. Энд C - интегралчлалын тогтмол гэж нэрлэдэг дурын тогтмол болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  • Тогтмолыг интералын тэмдгийн гадна гаргаж болно.
  • Нийлбэрийн интеграл нь нэмэгдхүүн тус бүрийн интегралын нийлбэртэй тэнцүү.
  • Интегралын уламжлал нь интеграл доторх функцтай тэнцүү.
  • Функцын дифференциалын интеграл нь энэ функц дээр интегралчлалын тогтмолыг нэмсэнтэй тэнцүү.

 

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 353 Төлбөртэй

Тэгш хэм гэдэг нь тухайн обьект эсхүл түүний хэсэг тэгш хэмийн төв гэж нэрлэдэг тодорхой цэг, тэнхлэг, хавтгайтай харьцангуйгаар ижил хэмжээ, пропорционалаар байршихыг хэлнэ. Энгийнээр хэлбэл тэгш хэмийн төвтэй харьцангуй байршиж буй хэсгүүд ижилхэн бол үүнийг тэгш хэмтэй гэж хэлнэ.

  Нээгдсэн тоо: 12080 Нийтийн

Интеграл, уламжлал хоёр мат анализд голлох байр суурийг эзэлдэг тухай би өмнө нь Уламжлалыг тооцох хичээлд дурдаж байсан. Интегралыг олох үйлдлийг интегралчлах гэж нэрлэдэг. Хичээлийн материалыг сайн ойлгохын тулд та уламжлалыг олох наад захын болбол дунд хэмжээний мэдлэгтэй байх хэрэгтэй. Иймд эхлээд Уламжлалыг тооцох, Дифференциалчлах дүрэм хичээлийг үзэн судалсан байхыг зөвлөе. Интеграл үзэх гэж байж юун уламжлал яриад байгаад гайхаж магадгүй. Тэгвэл уламжлал олох (дифференциалчлах), тодорхойгүй интегралыг олох (интегралчлах) хоёр нь нэмэх, хасах эсхүл үржих, хуваахын адилаар харилцан эсрэг үйлдлүүд юм. Эндээс нэг үйлдлийг мэдэхгүйгээр /өөрөөр хэлбэл уламжлалыг олох дадлагагүйгээр/ нөгөөд нь хол явахгүй нь ойлгомжтой.

  Нээгдсэн тоо: 5049 Бүртгүүлэх

Хоёрдугаар эрэмбийн алгебрын тэгшитгэлийг квадрат тэгшитгэл гэнэ.

Энд a, b, c өгөгдсөн тоон болон үсгэн коэффициентууд. x нь үл мэдэгдэгч. Хэрвээ a=0 бол шугаман тэгшитгэл болно. Иймээс бид энд зөвхөн a≠0 тохиолдолыг авч үзнэ. Тэгвэл тэгшитгэлийн бүх гишүүдийг a -д хуваавал дараах тэгшитгэл гарна.

Энд p=b/a, q=c/a. [2] тэгшитгэлийг эмхэтгэсэн квадрат тэгшитгэл гэдэг. Харин [1] тэгшитгэлийг гүйцэд квадрат тэгшитгэл гэнэ. Хэрвээ b эсвэл c эсвэл хоёулаа тэгтэй тэнцүү тохиолдолд тэгшитгэлийг дутуу квадрат тэгшитгэл гэнэ.

  Нээгдсэн тоо: 3837 Нийтийн

Тригнометрийн тэгшитгэлийн системийг бодохдоо алгебрын / солих, орлуулах, хураах г.м / аргуудаас гадна тригнометрийн томьёо болон хувиргалтын аргуудыг ашиглана.

Жишээ 1

тэгшитгэлийн системийг бод.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 254

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 339

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 306

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 404

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 450

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 478

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 561

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 636

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 673

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1414

 

тэгшитгэл бод.

Нээгдсэн тоо : 1020

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1066