Тодорхойгүй интеграл

Хэрвээ X хэсэгт байх x болгоны хувьд бол тасралтгүй F(x) функцыг f(x) ийн эх функц гэнэ.

Жишээ
(-∞,+∞) мужид функц нь учраас ын эх функц болно. Мөн түүнчлэн x3+13 ийн уламжлал нь 3x2 тул x3+13 нь болгоны хувьд 3x2 ийн эх функц нь болно. 13 оронд дурын тогтмол авч болох нь ойлгомжтой.

Иймээс эх функцыг олох бодлого нь хязгааргүй олон шийдтэй. Энэ байдал нь тодорхойгүй интегралын тодорхойлолтод тусгалаа олсон байдаг.
X хэсэгт f(x) функц нь түүний эх функцуудын олонлог юм.

гэж бичдэг. Энд C - интегралчлалын тогтмол гэж нэрлэдэг дурын тогтмол болно.

Тодорхойгүй интегралын үндсэн шинжүүд

  • Тогтмолыг интералын тэмдгийн гадна гаргаж болно.
  • Нийлбэрийн интеграл нь нэмэгдхүүн тус бүрийн интегралын нийлбэртэй тэнцүү.
  • Интегралын уламжлал нь интеграл доторх функцтай тэнцүү.
  • Функцын дифференциалын интеграл нь энэ функц дээр интегралчлалын тогтмолыг нэмсэнтэй тэнцүү.

 

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 14380 Төлбөртэй

Квадрат тэгшитгэлийн бодолтын D<0 / энд D нь квадрат тэгшитгэлийн дискриминант / үед шинэ төрлийн тооны хэрэгцээ гарч ирсэн. Удаан хугацаанд эдгээр тоонуудыг бодит хэрэгцээ гараагүй байснаас тэдгээрийг хуурмаг тоо гэж нэрлэж байлаа. Одоо эдгээр тоо нь физик, цахилгаан техник, аэро болон гидродинамикт зэрэгт маш өргөн хэрэглэгээтэй болсон. Комплекс тоог a+bi хэлбэрээр бичдэг. Энд a ба b нь бодит тоо, харин i нь хуурмаг нэг буюу i²=-1. a тоог комплекс тооны абсцисс, харин b тоог ординат гэдэг. a+bi ба a-bi хоёр комплекс тоог хос комплекс тоо гэдэг.

Үндсэн тохиролцоо

  • Бодит a тоог a+0i эсвэл a-0i гэсэн комплекс хэлбэрээр бичиж болно. Жишээ : 5+0i эсвэл 5-0i бичлэг нь 5 гэсэн тоог илэрхийлнэ.
  • 0+bi комплекс тоог цэвэр хуурмаг тоо гэнэ. bi бичлэг нь 0+bi гэснийг илэрхийлнэ.
  • a+bi ба c+di хоёр комплекс тооны a=c , b=d байвал эдгээр тоог тэнцүү гэнэ. Эсрэг тохиолдолд комплекс тоонуудыг тэнцүү биш гэнэ

  Нээгдсэн тоо: 9520 Төлбөртэй

Элсэлтийн ерөнхий шалгалтын материалд вектортой холбоотой бодлогууд орж ирэх нь элбэг байдгийн дээр геометрийн зарим бодлогуудыг векторын үйлдлүүдийг ашиглан их амархан шийдэх боломжтой. Иймээс энэ хичээлээр вектор, координатын суурь бодлогууд болох

  • Векторын координатыг түүний эхлэл ба төгсгөлийн координатаар хэрхэн олох
  • Координатууд нь өгөгдсөн үед векторын уртыг хэрхэн олох
  • Хоёр векторын нийлбэр, ялгавар векторын координатыг хэрхэн олох
  • Хэрчмийн дундажийн координатыг хэрхэн олох
  • Векторуудын скаляр үржвэр гэж юу болох
  • Вектор хоорондын өнцгийг хэрхэн олох

талаар авч үзэх юм. Эдгээр бодлогуудыг бодож сурсан байхад ЕБС-ийн хөтөлбөрт багтах вектортой холбоотой бүхий л бодлогыг шийдэх чадвартай болно. Огторгуй дахь вектор координатын үйлдлүүд хавтгайн дүрэмтэй яг ижлээр хийгддэг. Энд зөвхөн гуравдагч координат л нэмэгдэн орж ирдэг.

  Нээгдсэн тоо: 8033 Нийтийн

Язгуур доор үл мэдэгдэгчийг агуулсан тэгшитгэлийг иррационал тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодохдоо тэгшитгэлд байгаа язгуурууд арифметикийн байх ёстой гэсэн нөхцлийг тооцон үл мэдэгдэгчийн утгын мужийг заавал тооцох хэрэгтэй. Үүнийг тооцоогүйгээс ихэнх алдаанууд гардаг. Хичээлээр иррационал тэгшитгэлийг бодох аргуудын талаар авч үзэх болно.

  Нээгдсэн тоо: 14976 Нийтийн

Тэгшитгэл зохиож бодох бодлогуудын нэг хэсэг бол ажлын бодлогууд байдаг. Ийм төрлийн бодлогууд шалгалт, шүүлэгт ирэх нь элбэг. Ажлын ямарч бодлогод ажилласан хугацаа, хөдөлмөрийн бүтээмж, нийт ажлын хэмжээ

Ажлын хэмжээ = Ажилласан хугацаа · Хөдөлмөрийн бүтээмж

харьцаагаар илэрхийлэгдэнэ. Ажлын бодлогуудад хамтран гүйцэтгэх, төлөвлөгөөгөөр ажил хийх, даацын гэх мэт төрлүүд голлодог.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 189

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 268

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 230

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 337

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 371

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 389

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 457

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 499

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 545

 
Энэ долоо хоногт

функцийн тодорхойлогдох мужийг ол.

Нээгдсэн тоо : 964

 

g(x)=2x-3x2 нь f(x)=x2-x3 -ийн уламжлал бол -ийг ол.

Нээгдсэн тоо : 477

 

хязгаарыг ол.

Нээгдсэн тоо : 227