Геометр ба механикт тодорхой интегралыг хэрэглэх

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

Эргэлдэх биеийн эзэлхүүн V нь тэнцүү.
Хувьсах хүчний ажил

OX тэнхлэгийн дагуу хөдлөх материаллаг цэгийг авч үзье. Цэг нь x тэнхлэг дээрх байрлалаасаа хамаарч f хүчээр хөдөлнө. Өөрөөр хэлбэл хүч нь x-ээс хамаарсан функц. Тэгвэл материаллаг цэгийг x=a байрлалаас x=b байрлалд шилжүүлэх ажил A нь гэсэн томьёогоор тодорхойлогдоно.

Жишээ
x=0, x=3 шугамуудаар хязгаарлагдасан y=x+1 шулуун OX тэнхлэгийг тойрон эргэлдэхэд гарах огтлогдсон конусын эзэлхүүнийг ол.

Бодолт
Дээр өгөгдсөн томьёогоор болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4727 Бүртгүүлэх

O гэсэн нэг цэгээс / өнцгийн орой / гарсан OA , OB хоёр цацрагаас / өнцгийн талууд / үүссэн геометрийн дүрсийг өнцөг гэнэ. /Зур. 1/

Өнгийг тэмдэг ба өнцгийн орой, төгсгөлүүдийг заасан 3 үсгээр гэж тэмдэглэнэ. Ингэхдээ оройг илэрхийлэх үсгийг дунд нь бичнэ. Өнцгийг OA цацраг O оройг тойрон OB цацрагтай давхцах хүртэл эргэлтээр хэмжинэ. Радиан ба градус гэсэн хоёр нэгжийг өнцгийн хэмжээнд голлон ашигладаг.

  Нээгдсэн тоо: 554 Бүртгүүлэх

Хавтгай дээрх ямар нэгэн A цэг болон a шулууны хувьд уг хавтгайд a шулуунтай харьцангуй тэгш хэмтэй зөвхөн нэг A1 цэг оршино. Энэхүү a шулууныг хавтгай дээрх a тэнхлэгтэй тэнхлэгийн тэг хэмийн тодорхойлогч гэж ярьдаг. Хэрвээ тэнхлэгийн тэгш хэм өгөгдсөн бол хавтгай дээрх дүрс бүрт a тэнхлэгтэй харьцангуй тэгш хэмтэй дүрс оршино.

  Нээгдсэн тоо: 1403 Төлбөртэй

Тригнометрийн ямарч тэгшитгэлийг бодох үндсэн аргачлал бол анхдагч тэгшитгэлийг хувирган торигнометрийн энгийн тэгшитгэлүүдэд шилжүүлээд тэдгээрийн шийдийг олох байдаг. Иймээс тригнометрийн энгийн тэгшитгэлийн шийдийг цээжээр мэдэж байх хэрэгтэй. Энгийн тэгшитгэлийн шийдийг гаргаж буй аргачлалыг сайн ойлголгүй хүчээр цээжлсэнээс болоод тэгшитгэлүүдийн шийдүүдийг холих, тодорхой интервал дахь шийдийг тодорхойлох, орлуулгаас шийдийг олох гээд олон тохиолдолд асуудалд орох талтай.

Жич: Тригнометрийн энгийн тэгшитгэлийн шийдүүд хэрхэн гарч байгааг ойлгохгүйгээр шууд цээжилбэл та цаашид мартан тригнометр гэдэг ухагдхууныг мэддэггүй хүмүүсийн эгнээнд орно. Ихэнх хүмүүс энэ замаар явсан байдаг учраас математикийг хүнд хэцүү хичээл мэтээр ойлгон ярьдаг.

Хичээлээр cosx=a, sinx=a хэлбэрийн энгийн тэгшитгэлийн шийдийг хэрхэн тодорхойлохыг авч үзье.

  Нээгдсэн тоо: 2519 Төлбөртэй

Тойргийн элементүүд хичээлд тойрогтой холбоо бүхий ухагдхуунуудын талаар авч үзсэн бол энэ хичээлээр тойргийн элементүүдээр үүсгэгдэх өнцгүүдийн тухай үзье. Сэдвийг ЕБС -д дэлгэрүүлэн судалдаггүй учраас тойргийн элементүүдээр үүсгэгдсэн өнцөг, тэдгээртэй холбоотой бодлогыг сурагчид бараг бодож чаддаггүй гэж хэлж болно.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 253

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 337

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 305

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 401

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 448

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 475

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 557

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 632

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 668

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1413

 

тэгшитгэл бод.

Нээгдсэн тоо : 1019

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1063