Геометр ба механикт тодорхой интегралыг хэрэглэх

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

Эргэлдэх биеийн эзэлхүүн V нь тэнцүү.
Хувьсах хүчний ажил

OX тэнхлэгийн дагуу хөдлөх материаллаг цэгийг авч үзье. Цэг нь x тэнхлэг дээрх байрлалаасаа хамаарч f хүчээр хөдөлнө. Өөрөөр хэлбэл хүч нь x-ээс хамаарсан функц. Тэгвэл материаллаг цэгийг x=a байрлалаас x=b байрлалд шилжүүлэх ажил A нь гэсэн томьёогоор тодорхойлогдоно.

Жишээ
x=0, x=3 шугамуудаар хязгаарлагдасан y=x+1 шулуун OX тэнхлэгийг тойрон эргэлдэхэд гарах огтлогдсон конусын эзэлхүүнийг ол.

Бодолт
Дээр өгөгдсөн томьёогоор болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1778 Төлбөртэй

Нэг болон хоёр үл мэдэгдэгчтэй тэнцэл биш, тэнцэл бишийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Нэг үл мэдэгдэгчтэй тэнцэл бишийг бодохдоо бүх гишүүдийг тэнцэл бишийн нэг талд гарган f ( x ) > 0  хэлбэрт оруулаад f ( x ) = 0 функцын графикийг байгуулна. Үүний дараа графикийг ашиглан функцын тэгүүдийг олно. Эдгээр нь X тэнхлэгийг хэд хэдэн хэсэгт хуваасан байх бөгөөд x-ийн аль хэсэгт функцын утга тэнцэл бишийн утгатай давхцаж байгааг тодорхойлно.
Жишээлбэл: функцын тэгүүд нь a,b /Зур. 30/ гэе. Тэгвэл графикаас f ( x ) > 0 байх хэсэг нь x<a ба x>b гэдэг нь тодорхой. Эдгээр хэсгийг тодруулсан байгаа. Энд > тэмдгийн оронд <,  ≤, ≥ тэмдгүүдийн аль нь ч байж болно.

  Нээгдсэн тоо: 2767 Бүртгүүлэх

Хувьсагч тригнометрийн функцэд агуулагдаж буй илэрхийллийг тригнометрийн илэрхийлэл гэдэг. Ийм төрлийн илэрхийллийг хувирган эмхэтгэл хийхэд тригнометрийн функцуудын чанар, тригнометрийн томьёонуудыг ашиглана. Тригнометрийн тэгшитгэл, тэнцэтгэл бишүүдийг бодохдоо эхлээд илэрхийлэлд хувиргалт хийн тэдгээрийг энгийн хэлбэрт шилжүүлэн боддог тул тригнометрийн илэрхийллийг хялбарчлах аргыг сайн эзэмшсэн байхад энэ сэдвийн бодлогуудыг онцын хүндрэлгүй шийднэ. Энэ хичээлээр тригнометрийн илэрхийллийг хувиргахад ашигладаг үндсэн томьёонуудыг хэрхэн хэрэглэхийг сурах болно.

  Нээгдсэн тоо: 3258 Бүртгүүлэх

Тойргийн төвтэй давхцсан оройтой тойргийн хоёр радиусаар үүсэх өнцгийг тойргийн төв өнцөг гэдэг.

Зураг 1 -д тойргийн төв O болон AO, OB радиусуудаар үүссэн O оройтой хоёр төв өнцгийг үзүүлсэн. Төв өнцгийн дотоод хэсэгт орших нумыг тухайн төв өнцөгт харгалзах нум гэнэ. AOB төв өнцөгт A ба B төгсгөлтэй хоёр нум харгалзана. 2-р зураг.

  Нээгдсэн тоо: 1713 Төлбөртэй

Математик ямар хэрэгтэй талаар хүмүүс олон янзаар ярьдаг. Зарим хүмүүс математикийн хэрэглээг зөвхөн 4 аргын тооны хүрээнд хардаг боловч өөрөө математикийн шинжлэх ухааны ололт дээр суурилан бий болсон техник хэрэгслүүдийг угаасаа байсан мэтээр хэрэглэж байдаг. Гэтэл зарим нэг хэсэг нь математикгүйгээр болоод л ирсэн гэсэн зүйлийг ч ярьж байдаг. Энэ бол хүмүүсийн ойлголтын өнцгүүд. Харин сайн сурдаг сурагчид бүгд математиктаа бусдаасаа илүү байдагийг бүгд мэднэ. Яагаад ийм зүй тогтол байдагт өөрийн бодлыг хэлье. Зарим хичээлд муу байж болох ч математикт муу байж болохгүй. Математикт сайн бол бусад хичээлд муу байх үндэсгүй гэдгийг баттай хэлэх байна. Иймээс хичээл сурлагадаа сайжран, амжилтанд хүрье гэвэл математикийн хичээлээ сайн үзэн ойлгоорой. Тэгвэл бусад хичээлүүдэд аяндаа сайн болоод ирнэ. Туршаад үзээрэй.

Энэ удаад тойрогт багтсан өнцгийн талаар авч үзье. Математикийг зөвхөн тоо бодох хүрээнд ердөө харж болохгүй. Онолын мэдлэгт суурилан асуудлын шийдлийг олдог юм шүү.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 281

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 359

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 330

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 423

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 470

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 497

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 587

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 673

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 707

 
Энэ долоо хоногт

Хоёр тойрог гадна талаараа шүргэлцсэн. Нэг тойргийн шүргэгч нь нөгөө тойргийнхоо төвийг дайран гарсан. Шүргэлтийн цэгээс хоёрдахь тойргийн төв хүртэлх зай нь энэ тойргийн радиусаас 3 дахин урт. Нэгдүгээр тойргийн урт хоёрдугаар тойргийн уртаас хэд дахин их вэ?

Нээгдсэн тоо : 1549

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 2007

 

бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 988