Геометр ба механикт тодорхой интегралыг хэрэглэх

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

Эргэлдэх биеийн эзэлхүүн V нь тэнцүү.
Хувьсах хүчний ажил

OX тэнхлэгийн дагуу хөдлөх материаллаг цэгийг авч үзье. Цэг нь x тэнхлэг дээрх байрлалаасаа хамаарч f хүчээр хөдөлнө. Өөрөөр хэлбэл хүч нь x-ээс хамаарсан функц. Тэгвэл материаллаг цэгийг x=a байрлалаас x=b байрлалд шилжүүлэх ажил A нь гэсэн томьёогоор тодорхойлогдоно.

Жишээ
x=0, x=3 шугамуудаар хязгаарлагдасан y=x+1 шулуун OX тэнхлэгийг тойрон эргэлдэхэд гарах огтлогдсон конусын эзэлхүүнийг ол.

Бодолт
Дээр өгөгдсөн томьёогоор болно.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 15202 Төлбөртэй

Алгебрийн шугаман тэгшитгэлүүдийн системийг (АШТС) бодоход Гауссын арга их тохиромжтой. Энэ арга бусад аргуудтай харьцуулахад хэдэн давуу талтай.

  1. Тэгшитгэлийн системийг зохицож байгаа  эсэхийг урьдчилан шалгах шаардлагагүй
  2. Гауссын аргаар тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирсон системийг бодож болохын дээр тэгшитгэлийн тоо нь үл мэдэгдэгчийн тоотой тохирохгүй эсхүл үндсэн матрицийн тодорхойлогч тэгтэй тэнцүү системийг ч бодож болдог
  3. Гауссын арга харьцангуй бага тооцоогоор үр дүнд хүрдэг.

Үндсэн тодорхойлолт ба тэмдэглэгээнүүд

n үл мэдэгдэгчтэй p шугаман тэгшитгэлийн системийг авч үзье. (p болон n тэнцүү байж болно.)

  Нээгдсэн тоо: 11714 Нийтийн

Энэ удаа тооны машин ашиглахгүйгээр том тооноос хэрхэн язгуур авах талаар үзье. Үүнийг мэдэж байх нь шалгалт шүүлэг гэлтгүй ерөнхий тохиолдолд ч хэрэгтэй. Тоог үржигдхүүнд задлаад язгуур авчихна гэж бодвол энгийн мэт. Жишээ нь 291600 гэсэн тоог үржигдхүүнд задалбал
болно. Эндээс тооцоог хийвэл

гээд л болоо. Тоо 2, 3, 4 гэх мэтээр үржигдхүүнд задарвал арга нь дажгүй. Гэхдээ нэг асуудал бий. Язгуураас гаргах тоо маань анхны тоонуудыг үржвэр хэлбэрээр задарч байвал яах вэ? Жишээ нь 152881 нь 17·17·23·23 гэж задарна. Эдгээр хуваагчийг шууд олох гээд үзээрэй. Нилээд хүндхэн байх болов уу.

  Нээгдсэн тоо: 1962 Төлбөртэй

Бид илэрхийллийг үржигдхүүнд задлах аргуудын эхний 4 -ийг өмнөх хичээлүүдээр үзсэн. Одоо та квадрат 3-н гишүүнтийг үржигдхүүнд задлахыг бүрэн хэмжээнд сурсан гэж бодож байна. Хэрвээ бид бодлого бодож байхад x -ийн зэрэгт квадратаас /2-оос/ их зэрэгтэй илэрхийлэл ороод ирвэл яах вэ? x -ийн зэрэг хоёроос их илэрхийллийг дээд эрэмбийн гэж нэрлэдэг.
Олон гишүүнтүүд гэсэн ерөнхий хэлбэртэй байдаг. n=1 бол хоёр гишүүнт, n=2 бол квадрат гурван гишүүнт, n>2 их бол ерөнхийд нь дээд эрэмбийнх гэж нэрлээд байгаа хэрэг.
Дээд эрэмбийн олон гишүүнтийн шийдийг олохдоо бид өмнө нь үзсэн аргуудыг ашиглаад үржигдхүүнд задлах боломж гарч болох ч нилээд цаг зарцуулах хэрэгтэй болж мэднэ.

  Нээгдсэн тоо: 470 Бүртгүүлэх

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг. ЕБС -д орсноос төгсөх хүртлээ тооны буюу математикийн хичээлийг үздэг. Математикийн нэг ухагдхуун нөгөөгийнхөө суурь болоод явдаг тул бүр эхнээс нь буюу арифметикийг сайн ойлгосон байх шаардлагатай. Бага хүүхдүүдэд зааж байгаа тул ухагдхуунууд энгийн тул хүмүүс арифметикт нэг их анхаардаггүй нь хүүхдийн хоцрогдолын суурийг тавьдаг ч байж мэдэх тул сайтын арифметиктэй холбоотой хичээлүүдийг хүүхэдтэйгээ цуг үзэхийг зөвлөе. 

Хичээлээр тоо нэмэгдүүлэх ухагдхууныг авч үзье. Тоог хэдэн нэгжээр, хэд дахин эсхүл тодорхой хувиар нэмэгдүүлж болно.

Делегат нь аргыг заасан обьектоор илэрхийлэгдэнэ. Өөрөөр хэлбэл делегат гэдэг нь аргын заагч бөгөөд түүгээр тухайн аргыг дуудаж…

Нээгдсэн тоо : 15

 

Энэ хичээлээс эхлэн олон хуудастай төслийг үүсгэн хуудас хооронд шууд буюу дахин ачаалалтгүйгээр шилжин удирдах боломжийн талаар үзэх…

Нээгдсэн тоо : 16

 

Хавтгай дээрх ямар нэгэн A цэг болон a шулууны хувьд уг хавтгайд a шулуунтай харьцангуй тэгш хэмтэй зөвхөн нэг A1

Нээгдсэн тоо : 22

 

Арифметикт суралцаж буй сурагчид арифметикийн үндсэн дөрвөн үйлдлийн дүрэм болоод үйлдлүүдийг оновчтой хурдан хийх аргыг маш сайн эзэмших…

Нээгдсэн тоо : 26

 

Төлөв байдлын үүргийн гинж (Chain of responsibility) загварчлалын хэв шаардлагыг хэд хэдэн обьектууд боловсруулах боломжийг олгодог тул шаардлагын…

Нээгдсэн тоо : 22

 

Онцгой нөхцлийг дуудсан кодийг try блок эсхүл онцгой нөхцлийг боловсруулах catch блокгүй try..catch бүтцэд байршуулсан бол систем тохирох…

Нээгдсэн тоо : 30

 

Програмийн цэсийн хэрэгжүүлэлтийн компонентийг хийсний дараа хуудсаа нээгээд fa-bars икон дээр дарахад

дээрх байдлаар харагдаж…

Нээгдсэн тоо : 31

 

Үржих үйлдэлд байр сэлгэх, бүлэглэх, гишүүнчлэн үржүүлэх гэсэн дүрмүүд үйлчилдэг. Эдгээрийг эхнээс нь сайн ойлгон цээжлэх хэрэгтэй.  

Нээгдсэн тоо : 33

 

Төлөв (State) бол дотоод нөхцлөөс хамааран обьект өөрийн төлөв байдлыг өөрчлөх боломж олгодог загварчлалын хэв.

Нээгдсэн тоо : 37

 
Энэ долоо хоногт

a ба b нь 5x2+x-2=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 1172

 

Өсөх геометр прогресс үүсгэх гурван тооны 3 дахь нь 12 -той тэнцүү. Хэрвээ 12-ыг 9 -өөр соливол эдгээр гурван тоо нь арифметик прогресс үүсгэх бол тоонуудын нийлбэрийг ол.

Нээгдсэн тоо : 1534

 

утгыг ол.

Нээгдсэн тоо : 219