Олонлогийн үйлдлүүд

Олонлогийг латин цагаан толгойн том, элементийг жижиг үсгээр нь тэмдэглэдэг. энэ бичлэг нь a нь R олонлогийн элемент ба энэ олонлогт харьяалагдана гэснийг илэрхийлнэ. Эсрэгээр a нь R олонлогт харьяалагдахгүй гэдгийг гэж бичнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг эсрэгээрээ B олонлогийн элемент бүр нь A олонлогт харьяалагддаг байвал эдгээрийг тэнцүү олонлогууд (A=B) гэнэ.
Хэрвээ A олонлогийн элемент бүр нь B олонлогт харьяалагддаг бол A олонлог нь B олонлогт багтсан эсвэл A олонлог нь B олонлогийн дэд олонлог гэж хэлдэг. /Зур. 1/ Энэ тохиолдлыг гэж бичнэ. Дурын A олонлогийн хувьд багтаалт хүчинтэй.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 1432 Төлбөртэй

Хавтгайн геометрийн дүрсүүдээс сурагчид хамгийн хэцүү, ойлгомжгүй, асуудал үүсгэдэг дүрс бол тойрог. Гурвалжин, тэгш өнцөгт, квадрат, ромбо, трапец гэх мэт дүрсүүдийн тухайд сурагчид арай илүү ойлгосон байдаг. Хичээлээр тойргийн элементүүдийн талаар ойлголт өгөхийг хичээе.

  Нээгдсэн тоо: 9372 Төлбөртэй

Зөв олон өнцөгт

Өнцгүүд нь тойрог дээр байрлах олон өнцөгтийг тойрогт багтсан /Зур. 54/, талууд нь тойргийн шүргэгч болж байгаа олон өнцөгтийг тойрог багтаасан /Зур. 55/ гэж нэрлэдэг.

Олон өнцөгтийн орой дээгүүр дайрч өнгөрч байгаа тойргийг багтаасан тойрог /Зур. 54/, олон өнцөгтийн талууд нь шүргэгч болж байгаа тойргийг багтсан тойрог /Зур. 55/ гэж бас нэрлэдэг.

  Нээгдсэн тоо: 5509 Нийтийн

ax+b=0 хэлбэрийн тэгшитгэтгэлийг нэг үл мэдэгдэгчтэй шугаман тэгшитгэл гэнэ. Энд a , b нь тодорхой тоонууд харин x нь үл мэдэгдэгч болно.
Тэгшитгэлийг бодно гэдэг нь тэгшитгэлийг адитгал болгох x үл мэдэгдэгчийн тоон утгыг олно.

  1. Хэрэв a≠0 бол тэгшитгэлийн шийд нь
  2. Хэрэв a=0 бол хоёр тохиолдол гарна.
    • b=0 бол 0·x+0=0 энд x дурын тоо байж болно.
    • b≠0 бол 0·x+b=0 энд тэгшитгэл шийдгүй.

 

  Нээгдсэн тоо: 2605 Бүртгүүлэх

Тойргийн төвтэй давхцсан оройтой тойргийн хоёр радиусаар үүсэх өнцгийг тойргийн төв өнцөг гэдэг.

Зураг 1 -д тойргийн төв O болон AO, OB радиусуудаар үүссэн O оройтой хоёр төв өнцгийг үзүүлсэн. Төв өнцгийн дотоод хэсэгт орших нумыг тухайн төв өнцөгт харгалзах нум гэнэ. AOB төв өнцөгт A ба B төгсгөлтэй хоёр нум харгалзана. 2-р зураг.

Класс ба структурт ердийн талбар, арга, шинжүүдээс гадна статик талбар, арга, шинжүүд байж болдог. Статик талбар, арга, шинжүүд…

Нээгдсэн тоо : 150

 

Хичээлээр useState -тэй тун төстэй useRef хукийн талаар авч үзье. useRef хукийн онцлог ашиглалтыг компонент хэдэн удаа дахин…

Нээгдсэн тоо : 123

 

Хүүхдүүд тооны хичээлийг анхнаасаа зөв ойлгон сураагүйгээс анги ахих тусмаа математикийн хичээлийнн хоцрогдолоос болоод дургүй болох тал байдаг.…

Нээгдсэн тоо : 312

 

Нийтлэлээр графикийн хэвүүдийн /GUI pattern/ түүхийг авч үзье. Боловсруулалтын графикийн хэвүүдийг 30 гаруй жилийн туршид боловсруулж байгаа бөгөөд…

Нээгдсэн тоо : 167

 

Хааяа өөр өөр параметрүүдийн багцтай нэг аргыг үүсгэх шаардлага гардаг. Ирсэн параметрүүдээс хамааран аргын тодорхой хэрэгжүүлэлтийг хэрэглэнэ. Ийм…

Нээгдсэн тоо : 196

 

Ямарч програмын ажиллагааны чухал хэсэг бол төрөл бүрийн мэдээллийн боловсруулалт, тэдгээртэй ажиллахтай холбоотой байдаг. Иймээс энэ хичээлээс vuejs

Нээгдсэн тоо : 139

 

Хичээлээр react -ийн хукуудаас их өргөн ашиглагддаг useEffect -ийн талаар авч үзье. useEffect -ийн ажиллагааг судлах хуудасны кодийг

Нээгдсэн тоо : 138

 

Илэрхийлэл бол математикийн хэлний үндэс болсон суурь ойлголтуудын нэг. Математикийн илэрхийллийг тооцооны алгоритм, аксиом, теорем, бодлогын нөхцлүүд гээд…

Нээгдсэн тоо : 264

 

Програм зохиох бол нарийн төвөгтэй ажил. Ямар ч програмын хувьд өөрийн хийх ажлаа гүйцэтгэхийн чацуу цаашдаа хөгжих, ажлын…

Нээгдсэн тоо : 189

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1140

 

хязгаарыг бодоорой.

Нээгдсэн тоо : 720

 

Ангийн нийт сурагчдын 60% нь эмэгтэй сурагчид байдаг. Ангиас санамсаргүйгээр нэг сурагч сонгоход эрэгтэй сурагч байх магадлалыг ол.

Нээгдсэн тоо : 1124