Дөрвөн өнцөгтийн периметр

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

Жишээ болгоод доорх зурагт үзүүлсэн гурван дөрвөн өнцөгтийн периметрийг  

тооцохыг харцгаая. Тэгш өнцөгт 3 см урттай хоёр талтай, 5 см урттай хоёр талтай учраас түүний периметрийг дээрх тодорхойлолтоор P = AB + BC + CD + DA = 3 см + 5 см + 3 см + 5 см = 16 см гэж олж болно.
Квадрат, ромб нь дөрвөн ижил талтай байдаг тул тэдгээрийн периметр
Квадратын хувьд P = A1B1 + B1C1 + C1D1 + D1A1 = 3 см + 3 см + 3 см + 3 см = 12см
Ромбын хувьд P = A2B2 + B2C2 + C2D2 + D2A2 = 3 см + 3 см + 3 см + 3 см = 12 см байна.
Дээрх дөрвөн өнцөгтүүдэд ижил урттай талууд байгаа учраас периметрийг талуудын нийлбэрээс гадна ижил талуудын үржвэрээр орлуулан тооцох боломжтой. Жишээ нь тэгш өнцөгтийн хувьд
P = 3 см + 5 см + 3 см + 5 см = 3 см · 2 + 5 см · 2 = (3 см + 5 см)2 = 8 см · 2 = 16 см гэж тооцох боломжтой.

Эндээс тэгш өнцөгтийн периметр түүний хамар орших талуудын /суурь, өндөр/ уртыг хоёроор үржүүлэн нэмсэн нийлбэртэй тэнцүү гэсэн дүгнэлтийг хийж болох бөгөөд тэгш өнцөгтийн периметрийг олох P = (a + b)2 ерөнхий томьёо гарч ирнэ. Энд P - тэгш өнцөгтийн периметр харин a, b - түүний хамар талууд.
Квадрат, ромб нь дөрвөн ижил талтай тул периметрийг үржвэрээр P = 3 см + 3 см + 3 см + 3 см = 3 см · 4 = 12 см гэж олж болно. Эндээс квадрат, ромбын периметр нь түүний талыг 4 -өөр үржүүлсэн тэнцүү буюу P = a · 4 гэсэн ерөнхий томьёо гарч ирнэ. Энд P - квадрат, ромбын периметр харин a - аль нэг дөрвөн талын нэгийнх урт.

Санамж: Зарим сурагчдад хичээл энгийн бүр хэрэггүй мэт санагдаж болно. Периметр ойлголтыг сайн ойлгосон сурагчид энэ хичээл нэг их юм өгөхгүй нь ойлгомжтой. Гэхдээ ЕБС -ийн геометрийн хичээлийн хавтгайн геометр сэдвийн бүхий л ойлголт ухагдхууныг багтаасан Хавтгайн геометр хичээлийн багц танд хэрэгтэй зүйлийг өгнө гэдэгт итгэж болно. Онолын мэдлэг нимгэн бол бодлогын шийдлийг олоход илүү хүнд. Энэ нь ялангуяа геометрийн бодлогод илүү мэдрэгддэг гэдэг нь сурагчид геометрийн бодлогод нилээд муу байдгаар батлагддаг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 5488 Нийтийн

Трапец бол эсрэг орших хоёр тал нь паралел нөгөө хоёр тал нь паралел биш гүдгэр дөрвөн өнцөгт юм. Паралел талуудыг трапецийн сууриуд харин нөгөө хоёр талыг хажуу талууд буюу хажуу гэдэг.

  Нээгдсэн тоо: 5769 Бүртгүүлэх

үед a цэгийн орчимд дифференциалчлагддаг f(x), g(x) функцуудын хувьд
эсвэл, эсвэл хязгаар байна.
нөхцлүүд биелж байвал байна.

  Нээгдсэн тоо: 3357 Төлбөртэй

Тригнометрийн ямарч түвшингийн тэгшитгэлүүд эцэстээ тригнометрийн энгийн тэгшитгэлийн бодолтонд шилждэг. Иймд тригнометрийн энгийн тэгшитгэлийг бодож сурсан байх нь зайлшгүй хэрэгтэй. Энэ үед хамгийн сайн туслах бол тригнометрийн нэгж тойрог байдаг. Синус болон косинусын тодорхойлолтыг санацгаая.
Өнцгийн косинус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн абсцисс байдаг. Өөрөөр хэлбэл цэгийн OX тэнхлэг дээрх координат юм.
Өнцгийн синус гэдэг бол нэгж тойрог дээрх тухайн өнцөгт харгалзах цэгийн ординат байдаг. Өөрөөр хэлбэл цэгийн OY тэнхлэг дээрх координат юм.  
Эдгээр тодорхойлолтыг тригнометрийн энгийн тэгшитгэлүүдийг бодоход хэрхэн ашиглахыг энэ хичээлээр авч үзье.

  Нээгдсэн тоо: 286 Нийтийн

Тэг тоонд нэгж байдаггүй тул түүнийг ямар нэгэн тоон дээр нэмэх эсхүл хасахад тухайн тоо өөрчлөгддөггүй.

arif03_02_01

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 133

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 196

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 198

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 220

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 217

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 298

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 227

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 222

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 222

 
Энэ долоо хоногт

бол

  1. байх тул
  2. байна.

Нээгдсэн тоо : 1361

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 1493

 

функц өгөгдөв.

  1. функцийн x0=2 цэгт татсан шүргэгч шулууны тэгшитгэлийг бичвэл
  2. , x=2, x=4 ба y=0 шугамуудаар хүрээлэгдсэн дүрсийн талбай
  3. y=2x+5 шулуунд перпендикуляр ба (1;1) цэгийг дайрсан шулууны тэгшитгэл нь
  4. функц ба x+5y-12=0 шулууны огтлолцлын цэгүүдийн хоорондын зай

Нээгдсэн тоо : 1034