Дөрвөн өнцөгтийн периметр

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

Жишээ болгоод доорх зурагт үзүүлсэн гурван дөрвөн өнцөгтийн периметрийг  

тооцохыг харцгаая. Тэгш өнцөгт 3 см урттай хоёр талтай, 5 см урттай хоёр талтай учраас түүний периметрийг дээрх тодорхойлолтоор P = AB + BC + CD + DA = 3 см + 5 см + 3 см + 5 см = 16 см гэж олж болно.
Квадрат, ромб нь дөрвөн ижил талтай байдаг тул тэдгээрийн периметр
Квадратын хувьд P = A1B1 + B1C1 + C1D1 + D1A1 = 3 см + 3 см + 3 см + 3 см = 12см
Ромбын хувьд P = A2B2 + B2C2 + C2D2 + D2A2 = 3 см + 3 см + 3 см + 3 см = 12 см байна.
Дээрх дөрвөн өнцөгтүүдэд ижил урттай талууд байгаа учраас периметрийг талуудын нийлбэрээс гадна ижил талуудын үржвэрээр орлуулан тооцох боломжтой. Жишээ нь тэгш өнцөгтийн хувьд
P = 3 см + 5 см + 3 см + 5 см = 3 см · 2 + 5 см · 2 = (3 см + 5 см)2 = 8 см · 2 = 16 см гэж тооцох боломжтой.

Эндээс тэгш өнцөгтийн периметр түүний хамар орших талуудын /суурь, өндөр/ уртыг хоёроор үржүүлэн нэмсэн нийлбэртэй тэнцүү гэсэн дүгнэлтийг хийж болох бөгөөд тэгш өнцөгтийн периметрийг олох P = (a + b)2 ерөнхий томьёо гарч ирнэ. Энд P - тэгш өнцөгтийн периметр харин a, b - түүний хамар талууд.
Квадрат, ромб нь дөрвөн ижил талтай тул периметрийг үржвэрээр P = 3 см + 3 см + 3 см + 3 см = 3 см · 4 = 12 см гэж олж болно. Эндээс квадрат, ромбын периметр нь түүний талыг 4 -өөр үржүүлсэн тэнцүү буюу P = a · 4 гэсэн ерөнхий томьёо гарч ирнэ. Энд P - квадрат, ромбын периметр харин a - аль нэг дөрвөн талын нэгийнх урт.

Санамж: Зарим сурагчдад хичээл энгийн бүр хэрэггүй мэт санагдаж болно. Периметр ойлголтыг сайн ойлгосон сурагчид энэ хичээл нэг их юм өгөхгүй нь ойлгомжтой. Гэхдээ ЕБС -ийн геометрийн хичээлийн хавтгайн геометр сэдвийн бүхий л ойлголт ухагдхууныг багтаасан Хавтгайн геометр хичээлийн багц танд хэрэгтэй зүйлийг өгнө гэдэгт итгэж болно. Онолын мэдлэг нимгэн бол бодлогын шийдлийг олоход илүү хүнд. Энэ нь ялангуяа геометрийн бодлогод илүү мэдрэгддэг гэдэг нь сурагчид геометрийн бодлогод нилээд муу байдгаар батлагддаг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6925 Нийтийн

Ямарч зохиомол тоог анхны тоон үржвэр хэлбэрээр бичиж болдог.Жишээ нь

48 = 2 · 2 · 2 · 2 · 3, 225 = 3 · 3 · 5 · 5, 1050 = 2 · 3 · 5 · 5 · 7 г.м

Бага тооны хувьд энэ задаргааг үржүүлэхийн хүснэгтийг үндэслэн амархан хийж болно. Харин том тооны хувьд доорх аргыг хэрэглэж болно. Энэ аргыг тодорхой жишээгээр тайлбарлая. 1463 - г анхны тоон үржвэрт задлая. Ингэхийн тулд анхны тооны хүснэгтийг ашиглая.

  Нээгдсэн тоо: 657 Төлбөртэй

Алгебрт тоонуудын төрлүүд, тэдгээрт хийгдэх үйлдлүүдийг маш суурьтай зөв ойлгосон байх шаардлагатай. Бүхэл тоо, рационал тоонууд хичээлээр тоонуудын үндсэн төрлүүдийг мэддэг болсон. Тоонууд хооронд хийгдэх үйлдлүүд ерөнхийдөө ижил дүрэмтэй боловч сөрөг тоонуудын хувьд үр дүнгийн тэмдгийг тодорхойлох нь сурагчдад хүндрэл үүсгэх тал бий. Тэмдэг тодорхойлох дүрмийг сайн ойлгоогүйгээс л алгебрийн хичээлд хүүхдүүд дур сонирхолгүй болох эхлэл үүсдэг юм шиг. Гэтэл энэ нь алгебрийн үндсэн суурь ойлголт тул тэмдэг тодорхойлох дүрмийг сайн ойлгон тогтоолгүйгээр цааш явах боломжгүй. Иймээс хичээлийг сайтар судлан ойлгоод дараагийн сэдвүүдийг үзэхийг зөвлөе.

  Нээгдсэн тоо: 3831 Нийтийн

Хавгайн геометрт ихэнхдээ ашиглагддаг аксиомуудыг авч үзье

  1. Харьяаллын аксиом. Хавтгай дээрх дурын хоёр цэгийг дайруулж цорын ганц  шулуун татна.
  2. Дарааллын аксиом. Шулуун дээрх гурван цэгээс хоёр цэгийнхээ дунд орших нэг цэг олдоно.
  3. Хэрчим өнцөгийн тэнцлийн аксиом. Хэрвээ хоёр өнцөг юмуу хэрчим гуравдагч өнцөг юмуу хэрчимтэй тэнцүү бол тэдгээр нь өөр хоорондоо тэнцүү байна.
  4. Паралель шулууны аксиом. Шулууны гадна орших дурын нэг цэгийг дайруулан уг шулуунтай паралель цорын ганц шулуун татаж болно.
  5. Үргэлжлэлийн аксиом. / Архимедын аксиом /  AB ба CD дурын хоёр хэрчмийн хувьд гэсэн төгсгөлөг цэгийн багц байна. Тэгвэл AB хэрчим дээр байгаа хэрчмүүд нь CD дээрх хэрчмүүдтэй тэнцүү бөгөөд A ба хооронд B цэг оршино.

  Нээгдсэн тоо: 5244 Нийтийн

Математикийн бодлого бодоход томьёонууд чухал үүрэгтэй гэдгийг бүгд мэддэг. Ерөнхий боловсролын сургуулийн математикийн хичээлийн агуулгад хамаарагдах томьёонууд нилээд олон тооны боловч бодлого бодоход эдгээрийн цөөн хэсгийг нь илүү ихээр ашигладаг. Жишээлбэл үржүүлэхийг хураангуй томьёонууд, квадрат тэгшитгэлийн шийдийг олох, Виетийн тоерем, прогрессийн томьёонууд, Пифагор, синус, косинусын теоремууд гээд бараг тогтмол ашигладаг томьёонуудыг дурдаж болно.

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 74

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 102

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 106

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 129

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 128

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 184

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 126

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 122

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 134

 
Энэ долоо хоногт

Арифметик прогрессын ялгавар тэгтэй тэнцүү биш. Энэхүү прогрессын 1-р гишүүнийг 2-р гишүүнээр, 2-р гишүүнийг 3-р гишүүнээр, 3-р гишүүнийг 1-р гишүүнээр үржүүлэхэд гарах тоонууд өгөгдсөн дарааллаар геометрийн прогресс үүсгэдэг бол геометр прогессын хуваарийг ол.

Нээгдсэн тоо : 1339

 

Бөмбөрцөгт багтсан зөв дөрвөн өнцөгт пирамидийн суурь нь бөмбөрцөгийн төвийг дайрч байв. Пирамидийн эзэлхүүн 18-тай тэнцүү бол бөмбөрцөгийн радиусийг ол.

Нээгдсэн тоо : 1469

 

Зөв зургаан өнцөгт пирамидийн апофем h -тэй тэнцүү бөгөөд сууртай үүсгэх хоёр талст өнцөг 600 градус бол пирамидийн бүтэн гадаргуун талбайг ол.

Нээгдсэн тоо : 44