Дөрвөн өнцөгтийн периметр

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

Жишээ болгоод доорх зурагт үзүүлсэн гурван дөрвөн өнцөгтийн периметрийг  

тооцохыг харцгаая. Тэгш өнцөгт 3 см урттай хоёр талтай, 5 см урттай хоёр талтай учраас түүний периметрийг дээрх тодорхойлолтоор P = AB + BC + CD + DA = 3 см + 5 см + 3 см + 5 см = 16 см гэж олж болно.
Квадрат, ромб нь дөрвөн ижил талтай байдаг тул тэдгээрийн периметр
Квадратын хувьд P = A1B1 + B1C1 + C1D1 + D1A1 = 3 см + 3 см + 3 см + 3 см = 12см
Ромбын хувьд P = A2B2 + B2C2 + C2D2 + D2A2 = 3 см + 3 см + 3 см + 3 см = 12 см байна.
Дээрх дөрвөн өнцөгтүүдэд ижил урттай талууд байгаа учраас периметрийг талуудын нийлбэрээс гадна ижил талуудын үржвэрээр орлуулан тооцох боломжтой. Жишээ нь тэгш өнцөгтийн хувьд
P = 3 см + 5 см + 3 см + 5 см = 3 см · 2 + 5 см · 2 = (3 см + 5 см)2 = 8 см · 2 = 16 см гэж тооцох боломжтой.

Эндээс тэгш өнцөгтийн периметр түүний хамар орших талуудын /суурь, өндөр/ уртыг хоёроор үржүүлэн нэмсэн нийлбэртэй тэнцүү гэсэн дүгнэлтийг хийж болох бөгөөд тэгш өнцөгтийн периметрийг олох P = (a + b)2 ерөнхий томьёо гарч ирнэ. Энд P - тэгш өнцөгтийн периметр харин a, b - түүний хамар талууд.
Квадрат, ромб нь дөрвөн ижил талтай тул периметрийг үржвэрээр P = 3 см + 3 см + 3 см + 3 см = 3 см · 4 = 12 см гэж олж болно. Эндээс квадрат, ромбын периметр нь түүний талыг 4 -өөр үржүүлсэн тэнцүү буюу P = a · 4 гэсэн ерөнхий томьёо гарч ирнэ. Энд P - квадрат, ромбын периметр харин a - аль нэг дөрвөн талын нэгийнх урт.

Санамж: Зарим сурагчдад хичээл энгийн бүр хэрэггүй мэт санагдаж болно. Периметр ойлголтыг сайн ойлгосон сурагчид энэ хичээл нэг их юм өгөхгүй нь ойлгомжтой. Гэхдээ ЕБС -ийн геометрийн хичээлийн хавтгайн геометр сэдвийн бүхий л ойлголт ухагдхууныг багтаасан Хавтгайн геометр хичээлийн багц танд хэрэгтэй зүйлийг өгнө гэдэгт итгэж болно. Онолын мэдлэг нимгэн бол бодлогын шийдлийг олоход илүү хүнд. Энэ нь ялангуяа геометрийн бодлогод илүү мэдрэгддэг гэдэг нь сурагчид геометрийн бодлогод нилээд муу байдгаар батлагддаг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2572 Нийтийн

Тодорхой интегралыг математик, физик, механик, астроном зэрэг олон салбарт ашигладаг. Бид энд зөвхөн хоёр жишээ авч үзье.

Эргэлдэх биеийн эзэлхүүн

OX тэнхлэг, x=a, x=b шулуунууд, f(x) функцын графикаар хязгаарлагдсан муруй шугаман трапецыг OX тэнхлэгийг тойруулан эргүүлэхэд гарах биетийг авч үзье. /Зур. 10/

  Нээгдсэн тоо: 6391 Төлбөртэй

Бодлогын нөхцөлд трапецид багтсан тойрогийн талаар дурдсан бол бодолтын санаагаа дараах шинжүүдийг үндэслэн хийж байгаарай. Үүнд:
1.
Дөрвөн өнцөгтийн эсрэг орших талуудын нийлбэр тэнцүү байхад л түүнд тойргийг багтааж болдог. Эндээс трапецид тойрог багтсан гэвэл түүний сууриудын нийлбэр хажуу талуудын нийлбэртэй тэнцүү байна.

AB+CD=AD+BC

  Нээгдсэн тоо: 5992 Бүртгүүлэх

Стереометр нь огторгуйн дүрс ба биетийн шинж чанаруудыг судалдаг. Хавтгайн геометрт цэг, шулуун гэсэн үндсэн ойлголтууд байдаг шиг огторгуйн геометрийн үндсэн ойлголт нь шулуун ба хавтгай болно.

Огторгуйн геометрийн үндсэн аксиом - Нэг шулуун дээр үл орших огторгуйд байрлах гурван цэгийг дайруулан зөвхөн нэг л хавтгай байгуулж болно.

Нэг шулуун дээр орших гурван цэгийг дайруулан төгсгөлгүй олон / хавтгайн цацраг / хавтгайг байгуулж болно. Цацрагийн бүх хавтгайнууд дайрч өнгөрч байгаа шулууныг хавтгайн тэнхлэг гэдэг. Энэ шулуун ба түүн дээр байрлаагүй дурын цэг буюу шулууныг дайруулан зөвхөн нэг хавтгайг татаж болно. Хоёр шулууныг дайруулан хавтгайг дандаа татаж болдоггүй. Ийм шулуунуудыг зөрсөн шулуун гэнэ. Жишээ нь: Өрөөний нэг хананд татсан босоо шугам ба эсрэг хананд татсан хөндлөн шугамууд нь зөрсөн шугамууд болно.

  Нээгдсэн тоо: 3743 Төлбөртэй

Геометрийн хичээл математикаас илүү  хүнд гэж хүмүүс ярьдаг. Геометрт илүү олон тодорхойлолт, ойлголт, теоремууд орж ирдэгээс үүдэн ингэж үздэг байж болох талтай. Эдгээр нэмэлтүүдийг сайн ойлгоогүй бол геометрийн бодлогыг бодох ямарч боломжгүй. Иймээс Хавтгайн геометр хичээлийн багцыг үзэхийг хичээнгүйлэн зөвлөе.

Энэ хичээлд олон өнцөгтүүдийн тухай авч үзье. Огтлолцолгүй битүү тахир шугамаар хязгаарлагдсан геометрийн дүрсийг олон өнцөгт гэнэ.

Цэсийг нээх хаах ажиллагааг хариуцах компонентийг боловсруулсан тул энэ хичээлээр програмийн удирдах цэсийг…

Нээгдсэн тоо : 3

 

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 10

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 12

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 14

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 16

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 13

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 17

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 23

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 22

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 996

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2219

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 549