Дөрвөн өнцөгтийн периметр

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

Жишээ болгоод доорх зурагт үзүүлсэн гурван дөрвөн өнцөгтийн периметрийг  

тооцохыг харцгаая. Тэгш өнцөгт 3 см урттай хоёр талтай, 5 см урттай хоёр талтай учраас түүний периметрийг дээрх тодорхойлолтоор P = AB + BC + CD + DA = 3 см + 5 см + 3 см + 5 см = 16 см гэж олж болно.
Квадрат, ромб нь дөрвөн ижил талтай байдаг тул тэдгээрийн периметр
Квадратын хувьд P = A1B1 + B1C1 + C1D1 + D1A1 = 3 см + 3 см + 3 см + 3 см = 12см
Ромбын хувьд P = A2B2 + B2C2 + C2D2 + D2A2 = 3 см + 3 см + 3 см + 3 см = 12 см байна.
Дээрх дөрвөн өнцөгтүүдэд ижил урттай талууд байгаа учраас периметрийг талуудын нийлбэрээс гадна ижил талуудын үржвэрээр орлуулан тооцох боломжтой. Жишээ нь тэгш өнцөгтийн хувьд
P = 3 см + 5 см + 3 см + 5 см = 3 см · 2 + 5 см · 2 = (3 см + 5 см)2 = 8 см · 2 = 16 см гэж тооцох боломжтой.

Эндээс тэгш өнцөгтийн периметр түүний хамар орших талуудын /суурь, өндөр/ уртыг хоёроор үржүүлэн нэмсэн нийлбэртэй тэнцүү гэсэн дүгнэлтийг хийж болох бөгөөд тэгш өнцөгтийн периметрийг олох P = (a + b)2 ерөнхий томьёо гарч ирнэ. Энд P - тэгш өнцөгтийн периметр харин a, b - түүний хамар талууд.
Квадрат, ромб нь дөрвөн ижил талтай тул периметрийг үржвэрээр P = 3 см + 3 см + 3 см + 3 см = 3 см · 4 = 12 см гэж олж болно. Эндээс квадрат, ромбын периметр нь түүний талыг 4 -өөр үржүүлсэн тэнцүү буюу P = a · 4 гэсэн ерөнхий томьёо гарч ирнэ. Энд P - квадрат, ромбын периметр харин a - аль нэг дөрвөн талын нэгийнх урт.

Санамж: Зарим сурагчдад хичээл энгийн бүр хэрэггүй мэт санагдаж болно. Периметр ойлголтыг сайн ойлгосон сурагчид энэ хичээл нэг их юм өгөхгүй нь ойлгомжтой. Гэхдээ ЕБС -ийн геометрийн хичээлийн хавтгайн геометр сэдвийн бүхий л ойлголт ухагдхууныг багтаасан Хавтгайн геометр хичээлийн багц танд хэрэгтэй зүйлийг өгнө гэдэгт итгэж болно. Онолын мэдлэг нимгэн бол бодлогын шийдлийг олоход илүү хүнд. Энэ нь ялангуяа геометрийн бодлогод илүү мэдрэгддэг гэдэг нь сурагчид геометрийн бодлогод нилээд муу байдгаар батлагддаг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4498 Нийтийн

Модул ухагдхууныг сурагчид бүгд мэддэг ч түүнийг сайн ойлгосон нь маш цөөн байдаг. Асуудлын гол нь модул сэдвийн хичээлийг өнгөцхөн үздэг дээр нь бодит амьдралд модул оролцсон жишээнүүд цөөн тохиолддогтой холбоотой байж мэднэ. Иймээс модултай тэгшитгэлийг хэрхэн бодох талаар авч үзье. Модул гэхээр сурагчид их хүнд хэцүү зүйл гээд зайлсхийх гээд байдаг ч үнэн хэрэгтээ тийм ч хүнд ойлголт ердөө биш гэдгийг хичээлийг үзээд мэднэ. Материалыг хөнгөн, ойлгоход амар байлгах үүднээс таслан оруулна. Хүүхдүүд олон хуудас материалыг судлан ойлгох нь хүндрэлтэй байж болох талтай. Материалыг 30-40 минутын хичээлийн конспект байдлаар бэлтгэн хүргэх нь илүү үр дүнтэй гэж үзсэн хэрэг.

  Нээгдсэн тоо: 2857 Төлбөртэй

Үндсэн ойлголт. Олонлогийн жишээ

Олонлог ба олонлогийн элемент гэдэг нь үгээр утга гаргасан тодорхойлолт байдаггүй суурь ойлголтуудад хамаарагдана. Иймээс тогтсон ерөнхий шинжтэй юмсын цуглуулгын талаар олонлог ба олонлогийн элемент гэсэн яриа үүснэ. Номын сангийн номууд, зогсоол дээрх автомашинууд, тэнгэрийн одод, дэлхийн ургамал амьтны аймаг гэх мэт нь бүгд олонлогийн жишээ юм.
Төгсгөлөг тоотой элементээс бүтсэн олонлогийг төгсгөлөг гэнэ. Жишээ нь: номын хуудас, сургуулийн сурагчид г.м
Нэг ч элементгүй олонлогийг хоосон гэнэ. Жишээ нь: далавчтай заануудын олонлог, sinx=2 тэгшитгэлийн шийдийн олонлог г.м

  Нээгдсэн тоо: 1208 Төлбөртэй

Гурвалжны төстэйн шинжүүдийг геометрийн ихэнх бодлогод өргөнөөр ашигладаг тул шинжүүдийг маш сайн ойлгон цээжээр мэддэг байх хэрэгтэй.
Төстэй гурвалжингууд гэдэг нь бүх өнцгүүд нь тэнцүү, нэг гурвалжны бүх талууд нөгөөгийнхөө төстэй талуудаас нэг ижил тоогоор урт эсхүл богино байх гурвалжингуудыг хэлнэ. Өөрөөр хэлбэл гурвалжингуудын бүх өнцгүүд тэнцүү ба төстэй талууд нь пропорционал бол тэдгээр нь төстэй гурвалжинууд.

  Нээгдсэн тоо: 5807 Төлбөртэй

Биет дээр орших E цэг бүрт энэ биет дээр E’ гэсэн цэг олдоод EE’ хэрчим нь S хавтгайтай перпендикуляр бөгөөд хавтгайгаар (EA=AE’) гэсэн тэнцүү хэсэгт хуваагдаж байвал геометрийн дүрсийг S хавтгайгаар тэгш хэмтэй /Зур. 104/ гэнэ. Нарийн утгаараа тэгш хэмтэй дүрс болон биетүүд нь өөр хоорондоо тэнцүү биш байдаг.
Жишээ нь зүүн гарын бээлий нь баруун гарт таардаггүй г.м. Эдгээрийг толин тусгалын тэнцүү гэдэг.

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 7

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 8

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 11

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 11

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 13

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 20

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 20

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 18

 

Хичээлээр хасах үйлдэлд оролцогчдийн өөрчлөлт ялгавар буюу үр дүнд хэрхэн нөлөөлөх талаар авч үзье. Нийлбэр, ялгаварын гишүүдийн өөрчлөлт…

Нээгдсэн тоо : 15

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 993

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2215

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 545