Дөрвөн өнцөгтийн периметр

Дурын геометрийн гүдгэр дүрсний периметр нь түүний бүх талуудын нийлбэртэй тэнцүү байдаг тул тэгш өнцөгт, квадрат, ромб зэрэг дөрвөн өнцөгтийн периметрийг түүний дөрвөн талын нийлбэрээр тодорхойлж болно.

Жишээ болгоод доорх зурагт үзүүлсэн гурван дөрвөн өнцөгтийн периметрийг  

тооцохыг харцгаая. Тэгш өнцөгт 3 см урттай хоёр талтай, 5 см урттай хоёр талтай учраас түүний периметрийг дээрх тодорхойлолтоор P = AB + BC + CD + DA = 3 см + 5 см + 3 см + 5 см = 16 см гэж олж болно.
Квадрат, ромб нь дөрвөн ижил талтай байдаг тул тэдгээрийн периметр
Квадратын хувьд P = A1B1 + B1C1 + C1D1 + D1A1 = 3 см + 3 см + 3 см + 3 см = 12см
Ромбын хувьд P = A2B2 + B2C2 + C2D2 + D2A2 = 3 см + 3 см + 3 см + 3 см = 12 см байна.
Дээрх дөрвөн өнцөгтүүдэд ижил урттай талууд байгаа учраас периметрийг талуудын нийлбэрээс гадна ижил талуудын үржвэрээр орлуулан тооцох боломжтой. Жишээ нь тэгш өнцөгтийн хувьд
P = 3 см + 5 см + 3 см + 5 см = 3 см · 2 + 5 см · 2 = (3 см + 5 см)2 = 8 см · 2 = 16 см гэж тооцох боломжтой.

Эндээс тэгш өнцөгтийн периметр түүний хамар орших талуудын /суурь, өндөр/ уртыг хоёроор үржүүлэн нэмсэн нийлбэртэй тэнцүү гэсэн дүгнэлтийг хийж болох бөгөөд тэгш өнцөгтийн периметрийг олох P = (a + b)2 ерөнхий томьёо гарч ирнэ. Энд P - тэгш өнцөгтийн периметр харин a, b - түүний хамар талууд.
Квадрат, ромб нь дөрвөн ижил талтай тул периметрийг үржвэрээр P = 3 см + 3 см + 3 см + 3 см = 3 см · 4 = 12 см гэж олж болно. Эндээс квадрат, ромбын периметр нь түүний талыг 4 -өөр үржүүлсэн тэнцүү буюу P = a · 4 гэсэн ерөнхий томьёо гарч ирнэ. Энд P - квадрат, ромбын периметр харин a - аль нэг дөрвөн талын нэгийнх урт.

Санамж: Зарим сурагчдад хичээл энгийн бүр хэрэггүй мэт санагдаж болно. Периметр ойлголтыг сайн ойлгосон сурагчид энэ хичээл нэг их юм өгөхгүй нь ойлгомжтой. Гэхдээ ЕБС -ийн геометрийн хичээлийн хавтгайн геометр сэдвийн бүхий л ойлголт ухагдхууныг багтаасан Хавтгайн геометр хичээлийн багц танд хэрэгтэй зүйлийг өгнө гэдэгт итгэж болно. Онолын мэдлэг нимгэн бол бодлогын шийдлийг олоход илүү хүнд. Энэ нь ялангуяа геометрийн бодлогод илүү мэдрэгддэг гэдэг нь сурагчид геометрийн бодлогод нилээд муу байдгаар батлагддаг.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2711 Төлбөртэй

Математикийн элсэлтийн шалгалтанд геометрийн байгуулалт хийх бодлого заавал орж ирдэг. Бодлогууд ихэнхдээ нөхөх хэсэгт ордог бөгөөд зургийг хир зөв гаргаснаас амжилт ихээхэн шалгаалах болно. Нөхөх хэсгийн бодлогын оноо өндөр байдаг. Геомтрийн байгуулалт дээр сурагчид ерөнхий дүрсээ зөв зурсан хэдий ч цаашхи байгуулалт ялангуяа огтлолыг хийхдээ ихээхэн хүндрэлтэй тулдаг. Иймд энэ хичээлээр байгуулалт хийхэд төвөгтэйд орох пирамидын огтлолыг хэрхэн байгуулахыг авч үзэх болно. Сайн зөв зурсан зургаас бодлогын хариуг хэмжээд олчих боломжтой шүү.
Пирамидын огтлолыг байгуулах аргын тодорхой жишээн дээр авч үзцгээе. Пирамидад паралель хавтгайнууд байдаггүй болохоор хавтгайн ирмэгтэй зүсэгч хавтгай огтлолцох шугамыг байгуулахдаа энэхүү ирмэг орших хавтгай дээрх хоёр цэгийг дайрсан шулууныг татах аргыг голдуу хэрэглэдэг.

  Нээгдсэн тоо: 5559 Бүртгүүлэх

Натурал тоо гэдэг нь ямар нэгэн зүйлийн тооллого эсхүл дугаарлалтад ашиглагдах тоонууд.
Тасралтгүйгээр өсөх дарааллаар бичигдсэн натурал тоонууд натурал тооны цуваа буюу хураангуйгаар натурал цувааг үүсгэдэг. Жишээ нь

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... бол натурал цуваа.

  Нээгдсэн тоо: 1224 Нийтийн

Координатийн шулуун дээрх хоёр цэгийн хоорондын зай нь тэдгээрийн координатуудын ялгаварын модултай тэнцүү. Үүнийг математикийн хэлээр буюу томьёогоор илэрхийлбэл

AB=|a-b|

юм. Энд A, B бол координатийн шулуун дээрх дурын хоёр цэг бөгөөд a, b нь тэдгээрийн координатууд.

  Нээгдсэн тоо: 1773 Төлбөртэй

Бутархай хэсэгт зарим тоонууд хязгааргүй давтагдсан бутархайнууд байдаг. Ийм бутархайнуудын бичлэг 0,666666...; 1,33333...; 0,6818181818... гэж харагдах бөгөөд эдгээрийг үет бутархай гэж нэрлэдэг. Хичээлээр ийм бутархайнууд хэрхэн үүсдэг тэдгээртэй яаж ажиллахыг үзэх юм.

Үет бутархай үүсэх.

1-ийг 3 хуваавал эхлээд тэгээр өгөөд нэг үлдэнэ. Үлдэгдэл дээр тэг нэмээд 3 -аар өгөөд дахиад 1 үлдэнэ. Дахин тэг нэмээд 3-аар өгөөд дахиад нэг үлдэнэ. Эндээс 1:3=0,33333... гэсэн бутархай үүснэ.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 211

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 295

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 252

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 354

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 402

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 424

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 488

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 561

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 586

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 1102

 

Талууд нь 5; 12; 13 нэгж урттай гурвалжны хэлбэрийг тогтоогоорой.

Нээгдсэн тоо : 998

 

Призмд багтсан V эзэлхүүнтэй дөрвөн өнцөгт зөв пирамидийн оройнууд дээд суурийн төв болон доод суурийн талуудын дундаж цэгүүд харгалзах бол призмийн эзэлхүүнийг ол.

Нээгдсэн тоо : 307