Логарифм

Логарифмын үндсэн томьёонууд. Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

Логарифмын үндсэн томьёонууд

Дугаар Тодорхойлолт Томьёо
5.1.1 Үндсэн адилтгал
5.1.2 Ижил суурьтай логарифм
5.1.3 Нэгийн логарифм
5.1.4 Үржвэрийн логарифм
5.1.5 Ногдворын логарифм
5.1.6 Зэргийн логарифм
5.1.7 Логарифмыг шинэ суурьт шилжүүлэх
5.1.8 5.1.7 ийн тухайн тохиолдол
5.1.9 5.1.7 ийн тухайн тохиолдол
5.1.10 Аравтын логарифм
5.1.11 Натурал логарифм

Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

5.2.1

илтгэгч тэгшитгэлийг ямар нэгэн c≥0, c≠0 сууриар логарифмчилж тэгшитгэлд шилжүүлнэ. Тухайлбал

5.2.2

тэгшитгэлийн шийдээр зөвхөн гэсэн холимог системийн шийд ба u(x)=1 байлгах, f(x),g(x) тодорхойлогдох x ийн утгыг тооцно. төрлийн функц нь зөвхөн u(x)≥0 үед тодрохойлогдох тул [1] тэнцлийг хангах x ийн утгыг тэгшитгэлийн шийдээр тооцно. u(x)≤0 байх x ийн утгыг тэгшитгэлийн шийдээр тооцохгүй.

5.2.3

логарифм тэгшитгэл нь тэгшитгэлтэй эн чацуу

5.2.4

логарифм тэгшитгэл нь системүүдтэй эн чацуу. [1] тэгшитгэлийг бодохдоо дээрх хоёр системийн зөвхөн аль нэгийн нь эсвэл f(x)=g(x) тэгшитгэлийг бодно. Тэгшитгэл нь анхны тэгшитгэлийн хувьд гадны шийдтэй байж болох учраас шийдүүдийг анхны тэгшитгэлд орлуулж шалгана.

5.2.5

тэгшитгэлүүдийг бодохдоо 5.1.4 – 5.1.6 томьёонуудыг ашиглан хэлбэрүүдэд шилжүүлээд дараа нь 5.2.4 зөвлөмжийн дагуу бодно. Олдсон шийдүүдээс f(x)≥0, g(x)≥0, u(x)≥0 байлгах эсвэл анхны тэгшитгэлд орлуулах аргаар тэгшитгэлийн шийдийг гаргана.

5.2.6

Тэгшитгэлийг 5.1.4 – 5.1.6 томьёонуудыг ашиглан хувиргалт хийх үед өгөгдсөн тэгшитгэлийн шийд алдагдах гэм бий. Ийм алдаа гаргахгүйн тулд томьёонуудыг дараах байдлаар ашиглах хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 24219 Нийтийн

Гурвалжин, дөрвөн өнцөгт, олон өнцөгт, тойрог, дугуй, секторийн хэмжээсүүдийг олох томьёонууд

  Нээгдсэн тоо: 9454 Нийтийн

Хязгаар, хязгаарын арифметик үйлдлүүд, хязгаарын чанарууд, чухал хязгаарууд

  Нээгдсэн тоо: 9662 Нийтийн

Үржүүлэхийн хураангуй томьёонууд. Эдгээр томьёонууд математикийн бодлого бодоход тогтмол ашиглагдаж байдаг тул цээжлэх хэрэгтэй.

  Нээгдсэн тоо: 18156 Нийтийн

Прогрессын бодлогуудыг бодоход ашиглах үндсэн томьёонууд.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 255

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 339

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 307

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 404

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 450

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 478

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 561

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 637

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 673

 
Энэ долоо хоногт

тэгшитгэл бод.

Нээгдсэн тоо : 1414

 

тэгшитгэл бод.

Нээгдсэн тоо : 1020

 

Зурагт өгөгдсөн дотоод байдлаараа шүргэлцсэн хоёр тойргийн TA нь ерөнхий шүргэгч, TC нь том тойргийн огтлогч, жижиг тойргийн шүргэгч болно. DC=3, CB=2 бол TA -г ол.

Нээгдсэн тоо : 1066