Логарифм

Логарифмын үндсэн томьёонууд. Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

Логарифмын үндсэн томьёонууд

Дугаар Тодорхойлолт Томьёо
5.1.1 Үндсэн адилтгал
5.1.2 Ижил суурьтай логарифм
5.1.3 Нэгийн логарифм
5.1.4 Үржвэрийн логарифм
5.1.5 Ногдворын логарифм
5.1.6 Зэргийн логарифм
5.1.7 Логарифмыг шинэ суурьт шилжүүлэх
5.1.8 5.1.7 ийн тухайн тохиолдол
5.1.9 5.1.7 ийн тухайн тохиолдол
5.1.10 Аравтын логарифм
5.1.11 Натурал логарифм

Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

5.2.1

илтгэгч тэгшитгэлийг ямар нэгэн c≥0, c≠0 сууриар логарифмчилж тэгшитгэлд шилжүүлнэ. Тухайлбал

5.2.2

тэгшитгэлийн шийдээр зөвхөн гэсэн холимог системийн шийд ба u(x)=1 байлгах, f(x),g(x) тодорхойлогдох x ийн утгыг тооцно. төрлийн функц нь зөвхөн u(x)≥0 үед тодрохойлогдох тул [1] тэнцлийг хангах x ийн утгыг тэгшитгэлийн шийдээр тооцно. u(x)≤0 байх x ийн утгыг тэгшитгэлийн шийдээр тооцохгүй.

5.2.3

логарифм тэгшитгэл нь тэгшитгэлтэй эн чацуу

5.2.4

логарифм тэгшитгэл нь системүүдтэй эн чацуу. [1] тэгшитгэлийг бодохдоо дээрх хоёр системийн зөвхөн аль нэгийн нь эсвэл f(x)=g(x) тэгшитгэлийг бодно. Тэгшитгэл нь анхны тэгшитгэлийн хувьд гадны шийдтэй байж болох учраас шийдүүдийг анхны тэгшитгэлд орлуулж шалгана.

5.2.5

тэгшитгэлүүдийг бодохдоо 5.1.4 – 5.1.6 томьёонуудыг ашиглан хэлбэрүүдэд шилжүүлээд дараа нь 5.2.4 зөвлөмжийн дагуу бодно. Олдсон шийдүүдээс f(x)≥0, g(x)≥0, u(x)≥0 байлгах эсвэл анхны тэгшитгэлд орлуулах аргаар тэгшитгэлийн шийдийг гаргана.

5.2.6

Тэгшитгэлийг 5.1.4 – 5.1.6 томьёонуудыг ашиглан хувиргалт хийх үед өгөгдсөн тэгшитгэлийн шийд алдагдах гэм бий. Ийм алдаа гаргахгүйн тулд томьёонуудыг дараах байдлаар ашиглах хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 23903 Нийтийн

Гурвалжин, дөрвөн өнцөгт, олон өнцөгт, тойрог, дугуй, секторийн хэмжээсүүдийг олох томьёонууд

  Нээгдсэн тоо: 9388 Нийтийн

Үржүүлэхийн хураангуй томьёонууд. Эдгээр томьёонууд математикийн бодлого бодоход тогтмол ашиглагдаж байдаг тул цээжлэх хэрэгтэй.

  Нээгдсэн тоо: 6068 Нийтийн

Хоёр харьцааны тэнцүү чанар нь порпорц юм.

a, d - захын гишүүд, b, c - дунд гишүүд

  Нээгдсэн тоо: 11653 Нийтийн

Томьёоны бичлэгт ашигласан тэмдэглэгээнүүд.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 32

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 35

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 51

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 175

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 226

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 231

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 264

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 256

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 338

 
Энэ долоо хоногт

олон гишүүнтийг үржигдхүүн болгон задал.

Нээгдсэн тоо : 815

 

тэгшитгэлийг бод.

Нээгдсэн тоо : 923

 

Тоног төхөөрөмжийн сайжруулалтын үр дүнд ажилчны хөдөлмөрийн бүтээмж жилд хоёр удаа нэг ижил хувиар дээшилжээ. Хэрвээ ажилчин нэг ижил хугацаанд өмнө нь 2500 х.н харин одоо 2809 х.н бутээгдхүүн хийдэг болсон бол хөдөлмөрийн бүтээмж өсөх бүрдээ хэдэн хувиар өссөн бэ?

Нээгдсэн тоо : 381