Логарифм

Логарифмын үндсэн томьёонууд. Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

Логарифмын үндсэн томьёонууд

Дугаар Тодорхойлолт Томьёо
5.1.1 Үндсэн адилтгал
5.1.2 Ижил суурьтай логарифм
5.1.3 Нэгийн логарифм
5.1.4 Үржвэрийн логарифм
5.1.5 Ногдворын логарифм
5.1.6 Зэргийн логарифм
5.1.7 Логарифмыг шинэ суурьт шилжүүлэх
5.1.8 5.1.7 ийн тухайн тохиолдол
5.1.9 5.1.7 ийн тухайн тохиолдол
5.1.10 Аравтын логарифм
5.1.11 Натурал логарифм

Илтгэгч ба логарифм тэгшитгэлүүдийг бодох зөвлөмж

5.2.1

илтгэгч тэгшитгэлийг ямар нэгэн c≥0, c≠0 сууриар логарифмчилж тэгшитгэлд шилжүүлнэ. Тухайлбал

5.2.2

тэгшитгэлийн шийдээр зөвхөн гэсэн холимог системийн шийд ба u(x)=1 байлгах, f(x),g(x) тодорхойлогдох x ийн утгыг тооцно. төрлийн функц нь зөвхөн u(x)≥0 үед тодрохойлогдох тул [1] тэнцлийг хангах x ийн утгыг тэгшитгэлийн шийдээр тооцно. u(x)≤0 байх x ийн утгыг тэгшитгэлийн шийдээр тооцохгүй.

5.2.3

логарифм тэгшитгэл нь тэгшитгэлтэй эн чацуу

5.2.4

логарифм тэгшитгэл нь системүүдтэй эн чацуу. [1] тэгшитгэлийг бодохдоо дээрх хоёр системийн зөвхөн аль нэгийн нь эсвэл f(x)=g(x) тэгшитгэлийг бодно. Тэгшитгэл нь анхны тэгшитгэлийн хувьд гадны шийдтэй байж болох учраас шийдүүдийг анхны тэгшитгэлд орлуулж шалгана.

5.2.5

тэгшитгэлүүдийг бодохдоо 5.1.4 – 5.1.6 томьёонуудыг ашиглан хэлбэрүүдэд шилжүүлээд дараа нь 5.2.4 зөвлөмжийн дагуу бодно. Олдсон шийдүүдээс f(x)≥0, g(x)≥0, u(x)≥0 байлгах эсвэл анхны тэгшитгэлд орлуулах аргаар тэгшитгэлийн шийдийг гаргана.

5.2.6

Тэгшитгэлийг 5.1.4 – 5.1.6 томьёонуудыг ашиглан хувиргалт хийх үед өгөгдсөн тэгшитгэлийн шийд алдагдах гэм бий. Ийм алдаа гаргахгүйн тулд томьёонуудыг дараах байдлаар ашиглах хэрэгтэй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 6133 Нийтийн

Хоёр харьцааны тэнцүү чанар нь порпорц юм.

a, d - захын гишүүд, b, c - дунд гишүүд

  Нээгдсэн тоо: 11940 Нийтийн

Томьёоны бичлэгт ашигласан тэмдэглэгээнүүд.

  Нээгдсэн тоо: 10139 Нийтийн

Тригнометрийн хувиргалтууд хийхэд ашигладаг томьёонууд

  Нээгдсэн тоо: 9262 Нийтийн

Хязгаар, хязгаарын арифметик үйлдлүүд, хязгаарын чанарууд, чухал хязгаарууд

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 104

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 169

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 137

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 258

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 288

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 303

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 359

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 347

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 428

 
Энэ долоо хоногт

тэгшитгэлийг бод.

Нээгдсэн тоо : 563

 

тэнцэтгэл бишийг бод.

Нээгдсэн тоо : 1017

 

Хоёр тамирчин тойрог замаар нэгэн зэрэг гарч 3,2 км замыг туулан барианд оржээ. Тойргийг нэг тамирчин нөгөөгөөсөө 10 секундээр хурдан тойрдог. Ялагч барианд орж байхад нөгөө нь бүтэн тойрог гүйх үлдсэн байлаа. Ялагч замыг 9 мин 20 секундэд туулсан бол тойрог замын уртыг ол. Тамирчдын хурдыг тогтмол гэж үзнэ.

Нээгдсэн тоо : 518