Гайхамшигт хязгаарыг ашиглах

Хязгаарыг бодох аргууд сэдвээр дахин нэг хичээлийг танилцуулж байна. Энд бид хязгаарыг бодоход гайхамшигт хязгаарыг хэрхэн ашиглах талаар авч үзэх юм. Гайхамшигт хязгаар цөөн тооны байдаг ч оюутан сурагчдад ихэнхдээ нэг ба хоёрдугаар гайхамшигт хязгаарыг ашигладаг. ЕБС-ын хэмжээнд гайхамшигт хязгаарын талаар дэлгэрэнгүй үзээд байдаггүй ч эдгээрийг мэдэж байх нь зарим төрлийн бодлогыг бодолтонд маш хэрэгтэй болдог. Хичээлийг материалыг судлахаасаа өмнө Хязгаарыг ойлгох нь, Хязгаарыг бодох аргууд хичээлүүдийг үзэж судалсан байхыг сануулъя.

Нэгдүгээр гайхамшигт хязгаар

хязгаарыг аваад үзье. Хязгаарыг бодох аргууд хичээлд үзсэн аргын дагуу тэгийг илэрхийлэлд орлуулах гээд үзье. sin0=0 тэнцүү тул хүртвэрт тэг харин хуваар бол мэдээж тэг болно. Ингэснээр бид 0/0 тодорхойгүй байдалтай орлоо. Үүнийг яаж задлах вэ? Суут математикчдын баталсан нэгдүгээр гайхамшигт хязгаар нь биднийг ийм төрлийн тодорхойгүй байдлыг задлах ажлаас чөлөөлнө. Математик анализд гэж баталдаг бөгөөд үүнийг нэгдүгээр гайхамшигт хязгаар гэдэг. Томьёоны баталгааг хийх нь өөр асуудал тул томьёог шууд цээжлээд аваарай. Бодлогуудад функцууд өөр байдлаар байрлаж болох ч энэ нь юуг өөрчлөхгүй. Жишээ нь бол бас л 1-р гайхамшигт хязгаар.
Санамж: Дур мэдэн хүртвэр хуваарийг хэзээ ч сольж болохгүй. Хязгаар хэлбэрээр өгөгдсөн бол түүний юуг ч байрыг нь солихгүйгээр яг байгаа хэлбэрээр нь бодох ёстой.
Практикт x-ийн оронд энгийн болоод нарийн төвөгтэй функцууд ч байж болно. Гэхдээ эдгээр нь зөвхөн тэг рүү тэмүүлж байх хэрэгтэй. Жишээ нь


Энд гээд бүгд тэг рүү тэмүүлж байгаа тул 1-р гайхамшигт хязгаарыг ашиглах боломжтой. Харин гэвэл бид 1-р гайхамшигт хязгаарыг ашиглаж болохгүй. Яагаад гэвэл x2-3x+5 олон гишүүнт тэг рүү биш 5 руу тэмүүлж байгаа анхаарна уу. Тэгэхлээр төстэй бичлэгтэй болгонд 1-р гайхамшигт хязгаарыг ашиглаад байж болохгүй, бас бодлого дээр авсан жишээнүүд байдлаар өгөгдөөд байдаггүйг санаж аваарай. Одоо 1-р гайхамшигт хязгаарыг ашиглах практик жишээнүүдийг авч үзье.

Бодлого 14.026
хязгаарыг бод.

Бодолт

Бодлого 14.027
хязгаарыг бод.

Бодолт

Бодлого 14.029
хязгаарыг бод.

Бодолт

Бодлого 14.030
хязгаарыг бод.

Бодолт

Дээрх жишээнүүдээс харвал 1-р гайхамшигт хязгаарыг ашиглан тригнометрийн функцууд агуулсан аймшигтай хязгааруудыг хөнгөн бодохоор байгаа тул хязгаарын энэхүү томьёог цээжлэн зэвсэглэлдээ аваарай.

Хоёрдугаар гайхамшигт хязгаар

Математик анализийн онолд гэдгийг баталсан байдаг бөгөөд үүнийг хоёрдугаар гайхамшигт хязгаар гэдэг. e=2,718281828... - гэсэн иррационал тоо.
Практикт x-ийн оронд энгийн болоод нарийн төвөгтэй функцууд ч байж болно. Гэхдээ эдгээр нь зөвхөн хязгааргүй руу тэмүүлж байх хэрэгтэй. Томьёог шууд л цээжлэх хэрэгтэй.

Бодлого 14.031
хязгаарыг бод.

Бодолт

Хоёрдугаар гайхамшигт хязгаарын хувилбар бас байдаг. Үүнийг жишээгээр авч үзье.

Бодлого 14.032

Бодолт

Дээрх жишээ нь бодлогод хоёр гайхамшигт хязгаарыг хоёуланг ашиглахыг харуулж байна. Хэдийгээр иймэрхүү төрлийн бодлогууд ерөнхий шалгалтанд ирэх магадлал багатай ч гайхамшигт хязгаарын шууд хэлбэрээр эсхүл маш бага хувиргалт хийсэн бодлого ирэх өндөр магадлалтай тул эдгээр хязгааруудыг мэдэх нь танд ашигтай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 8729 Нийтийн

Тэгш өнцөгт гурвалжин дахь порпорционал хэрчмүүдийн хоорондын харьцааг тогтоон авах нь их хэрэгтэй. Тэгш өнцөгт гурвалжны гипотенузэд буулгасан өндөр түүнийг катетуудын проекц гэж нэрлэгдэх хэрчмүүдэд хуваадаг.

Тэгш өнцөгт гурвалжны шинжүүд

  1. Гипотенузэд буулгасан өндөр нь гипотенуз дээрх катетуудын проекцуудын дундаж порпорционалтай тэнцүү.
  2. Катет нь гипотенуз ба энэхүү катетын гипотенуз дээрх проекцын дундаж порпорционалтай тэнцүү.

  Нээгдсэн тоо: 7976 Нийтийн

Бодлогыг олон янзаар бодох аргуудыг эзэмших нь бодлого бодох техникт маш сайнаар нөлөөлөн ямарч бодлогыг өөр өнцгөөс харан шийдлийн олон санааг төрүүлдэг тул энэ удаад 3x2+7x-10=0 тэгшитгэлийг бодох аргуудыг авч үзье. Тэгшитгэлийн коэффициентүүдийг a - квадрат зэрэгтэй гишүүний, b - нэгдүгээр эрэмбийн гишүүний , c - сул гишүүн гэж тэмдэглэе.

  Нээгдсэн тоо: 3166 Нийтийн

Хоёр тойрогийн харилцан байршлыг тэдгээрийн радиусууд R, r болон төв хоорондын зай d гээр харьцуулан тодорхойлохыг авч үзье. Тодорхой байх үүднээс R≥r гэж үзье. Тойргууд харилцан байрших байрлалуудыг авч үзвэл

  Нээгдсэн тоо: 2258 Төлбөртэй

Энэ нийтлэлээр элсэлтийн ерөнхий шалгалтын хүрээнд ирдэг тригнометрийн бодлогуудаас арай хүндэвтэр тэгшитгэлүүд, тэдгээрийг бодох аргуудын талаар авч үзэцгээе. Ийм төрлийн тэгшитгэлүүдийг бодож сурах нь танд ямар нэгэн олимпиад, нэмэлт сонгон шалгаруулалтанд /жишээ нь тэтгэлэгт хөтөлбөрт хамрагдах шалгалтууд/ хэрэг болж мэднэ ээ. Та тригнометрийн тэгшитгэлүүдийг бодох стандарт аргуудын талаар эндээс үзээрэй.

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 58

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 90

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 85

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 203

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 245

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 254

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 297

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 285

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 369

 
Энэ долоо хоногт

функцийн интервал дахь хамгийн бага утгыг ол.

Нээгдсэн тоо : 855

 

Зөв дөрвөн өнцөгт пирамидын өндөр 4. Хажуу ирмэг суурийн хавтгайд 30 градусын өнцгөөр налсан бол пирамидын хажуу ирмэгийг ол.

Нээгдсэн тоо : 1848

 

бол M·N=?

Нээгдсэн тоо : 1161