Гайхамшигт хязгаарыг ашиглах

Хязгаарыг бодох аргууд сэдвээр дахин нэг хичээлийг танилцуулж байна. Энд бид хязгаарыг бодоход гайхамшигт хязгаарыг хэрхэн ашиглах талаар авч үзэх юм. Гайхамшигт хязгаар цөөн тооны байдаг ч оюутан сурагчдад ихэнхдээ нэг ба хоёрдугаар гайхамшигт хязгаарыг ашигладаг. ЕБС-ын хэмжээнд гайхамшигт хязгаарын талаар дэлгэрэнгүй үзээд байдаггүй ч эдгээрийг мэдэж байх нь зарим төрлийн бодлогыг бодолтонд маш хэрэгтэй болдог. Хичээлийг материалыг судлахаасаа өмнө Хязгаарыг ойлгох нь, Хязгаарыг бодох аргууд хичээлүүдийг үзэж судалсан байхыг сануулъя.

Нэгдүгээр гайхамшигт хязгаар

хязгаарыг аваад үзье. Хязгаарыг бодох аргууд хичээлд үзсэн аргын дагуу тэгийг илэрхийлэлд орлуулах гээд үзье. sin0=0 тэнцүү тул хүртвэрт тэг харин хуваар бол мэдээж тэг болно. Ингэснээр бид 0/0 тодорхойгүй байдалтай орлоо. Үүнийг яаж задлах вэ? Суут математикчдын баталсан нэгдүгээр гайхамшигт хязгаар нь биднийг ийм төрлийн тодорхойгүй байдлыг задлах ажлаас чөлөөлнө. Математик анализд гэж баталдаг бөгөөд үүнийг нэгдүгээр гайхамшигт хязгаар гэдэг. Томьёоны баталгааг хийх нь өөр асуудал тул томьёог шууд цээжлээд аваарай. Бодлогуудад функцууд өөр байдлаар байрлаж болох ч энэ нь юуг өөрчлөхгүй. Жишээ нь бол бас л 1-р гайхамшигт хязгаар.
Санамж: Дур мэдэн хүртвэр хуваарийг хэзээ ч сольж болохгүй. Хязгаар хэлбэрээр өгөгдсөн бол түүний юуг ч байрыг нь солихгүйгээр яг байгаа хэлбэрээр нь бодох ёстой.
Практикт x-ийн оронд энгийн болоод нарийн төвөгтэй функцууд ч байж болно. Гэхдээ эдгээр нь зөвхөн тэг рүү тэмүүлж байх хэрэгтэй. Жишээ нь


Энд гээд бүгд тэг рүү тэмүүлж байгаа тул 1-р гайхамшигт хязгаарыг ашиглах боломжтой. Харин гэвэл бид 1-р гайхамшигт хязгаарыг ашиглаж болохгүй. Яагаад гэвэл x2-3x+5 олон гишүүнт тэг рүү биш 5 руу тэмүүлж байгаа анхаарна уу. Тэгэхлээр төстэй бичлэгтэй болгонд 1-р гайхамшигт хязгаарыг ашиглаад байж болохгүй, бас бодлого дээр авсан жишээнүүд байдлаар өгөгдөөд байдаггүйг санаж аваарай. Одоо 1-р гайхамшигт хязгаарыг ашиглах практик жишээнүүдийг авч үзье.

Бодлого 14.026
хязгаарыг бод.

Бодолт

Бодлого 14.027
хязгаарыг бод.

Бодолт

Бодлого 14.029
хязгаарыг бод.

Бодолт

Бодлого 14.030
хязгаарыг бод.

Бодолт

Дээрх жишээнүүдээс харвал 1-р гайхамшигт хязгаарыг ашиглан тригнометрийн функцууд агуулсан аймшигтай хязгааруудыг хөнгөн бодохоор байгаа тул хязгаарын энэхүү томьёог цээжлэн зэвсэглэлдээ аваарай.

Хоёрдугаар гайхамшигт хязгаар

Математик анализийн онолд гэдгийг баталсан байдаг бөгөөд үүнийг хоёрдугаар гайхамшигт хязгаар гэдэг. e=2,718281828... - гэсэн иррационал тоо.
Практикт x-ийн оронд энгийн болоод нарийн төвөгтэй функцууд ч байж болно. Гэхдээ эдгээр нь зөвхөн хязгааргүй руу тэмүүлж байх хэрэгтэй. Томьёог шууд л цээжлэх хэрэгтэй.

Бодлого 14.031
хязгаарыг бод.

Бодолт

Хоёрдугаар гайхамшигт хязгаарын хувилбар бас байдаг. Үүнийг жишээгээр авч үзье.

Бодлого 14.032

Бодолт

Дээрх жишээ нь бодлогод хоёр гайхамшигт хязгаарыг хоёуланг ашиглахыг харуулж байна. Хэдийгээр иймэрхүү төрлийн бодлогууд ерөнхий шалгалтанд ирэх магадлал багатай ч гайхамшигт хязгаарын шууд хэлбэрээр эсхүл маш бага хувиргалт хийсэн бодлого ирэх өндөр магадлалтай тул эдгээр хязгааруудыг мэдэх нь танд ашигтай.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 4135 Бүртгүүлэх

Логарифмын үндсэн адитгал

N эерэг тооны (b>0,b≠1) суурьтай логарифм гэдэг нь N ийг гаргах b гийн x зэрэг илтгэгчийг хэлнэ. Логарифмыг доорх байдлаар тэмдэглэнэ.
Энэ бичлэг нь гэсэнтэй адил.

Жишээ:

Логарифмын тодорхойлолтыг адитгал байдлаар бичиж болно.

  Нээгдсэн тоо: 9691 Нийтийн

Орой бүрд нь ижил тоотой талууд нийлдэг, бүх тал нь хоорондоо тэнцүү зөв олон өнцөгтөөс бүрдсэн олон талтыг зөв олон талт гэнэ.
Зөвхөн таван гүдгэр, дөрвөн гүдгэр биш зөв олон талт мэдэгдэж байгаа. Гүдгэр зөв олон талтууд:

  • тетраэдер / 4 талт  Зур. 99/
  • куб буюу гексаэдер / 6 талт Зур. 100/
  • октаэдер / 8 талт  Зур. 101/
  • додекаэдер / 12 талт  Зур. 102/
  • икосаэдер / 20 талт  Зур. 103/

  Нээгдсэн тоо: 289 Нийтийн

Ялгавар дахь хасагдагчийг эсрэг тэмдэгтэйгээр авбал ялгаварыг нийлбэрээр сольж болно. Нийлбэрийн энэ шинжийг

a - b = a + (-b)

ерөнхий томьёогоор илэрхийлж болно. Эндээс дурын ялгаварыг нийлбэрээр сольж болохыг энэ томьёо илэрхийлнэ. Иймээс алгебрт хасах, нэмэх үйлдэлүүд оролцсон дурын илэрхийллийг нийлбэр гэж үзэж болно.

  Нээгдсэн тоо: 12 Бүртгүүлэх

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар өмнөх хичээлүүдэд үзээд байгаа.

Үржих бол ижил бүрдүүлэгчдийн нийлбэрийг олох арифметик үйлдэл.

Тодорхойлолтыг ойлгох үүднээс дараах жишээг авч үзье.
Зуслангийн хашаандаа нэг эгнээндээ 4 ширхэгээр 3 эгнээ гацуур суулгажээ. Зуслангийн хашаанд нийт хэдэн гацуур суулгасан бэ? Бодлогын нөхцлийг зургаар дүрсэлбэл

arif05_01

байна.

Математикийн үйлдлүүдэд нэг ба тэг тоонууд онцгой шинжүүдтэй. Үржих үйлдэлд нэг ба тэг

Нээгдсэн тоо : 3

 

Давталт (Iterator) паттерн нийлмэл обьектын бүх элементүүдэд тэдгээрийн дотоод бүтцийг задлахгүйгээр хандах абстракт интерфейсийг тодорхойлдог. C# хэл дээр…

Нээгдсэн тоо : 9

 

Тодорхой нөхцөлд жишээ нь тоог тэгд хуваах гэх мэт тохиолдолд систем өөрөө онцгой нөхцлийн генерацийг хийдэг. Гэхдээ C#

Нээгдсэн тоо : 11

 

Програмийг удирдах цэсийг нээх болон хаах ажиллагааг хариуцах компонентийг боловсруулъя. Үүний тулд төслийн components хавтаст Navigation хавтасыг үүсгээд…

Нээгдсэн тоо : 13

 

Арифметикийн үндсэн 4 үйлдлийн нэг бол үржих. Нэмэх , хасах үйлдлийн талаар…

Нээгдсэн тоо : 12

 

Шаблоны арга (Template Method) хэв дэд классуудад алгоритмын бүтцийг өөрчлөхгүйгээр зарим алхамуудыг дахин тодорхойлох боломж олгосон ерөнхий алгоритмыг…

Нээгдсэн тоо : 15

 

Гурвалжны медиантай холбоотой бодлогууд шалгалт шүүлэгт ихээр орж ирдэг. Иймээс гурвалжны медиан, түүний шинжүүдийг бүрэн мэддэг байх хэрэгтэй.

Нээгдсэн тоо : 22

 

Бүх онцгой нөхцлүүдийн суурь бол Exception төрөл. Төрөлд онцгой нөхцлийн талаарх мэдээллийг авч болох хэдэн шинжийг тодорхойлсон байдаг.…

Нээгдсэн тоо : 21

 

Сорилгын үр дүнгийн QuizResult компонентод сорилгыг дахин эхлүүлэх товч байгаа. react -ийг зохиогчид  програмийг компонент дээр суурилан хийх…

Нээгдсэн тоо : 19

 
Энэ долоо хоногт

илэрхийллийг хялбарчил

Нээгдсэн тоо : 995

 

ABCD трапецийн бага диагонал BD=6 бөгөөд суурьтай перпендикуляр. Трапецийн AD=3, DC=12 бол B, D мохоо өнцгийн нийлбэрийг ол.

Нээгдсэн тоо : 2217

 

Геометрийн шалгалтанд сурагчид шалгалтын асуултуудаас нэг асуулт ирнэ. Сурагч "Дотоод өнцөг" сэдвийн асуултуудад хариулах магадлал 0,35 харин "Багтаасан тойрог" сэдвийн асуултуудад хариулах ммагадлал 0,2 байжээ. Шалгалтын асуултуудад энэ хоёр сэдэвт хоёуланд зэрэг хамаарах асуулт байхгүй бол сурагчид энэ хоёр сэдвийн аль нэгэнд нь хамааралтай асуулт ирэх магадлалыг ол.

Нээгдсэн тоо : 546