Аравтын бутархай

Аравтын бутархай нь нэгжийг арав, зуу, мянга г.м хуваасны үр дүнд гарах хэсэг юм. Энэ бутархай нь бүхэл тооны бичлэгийн систем дээр үндэслэгдсэн тул тооцоолоход маш тохиромжтой. Иймээс аравтын бутархайн үйлдлүүд нь бүхэл тоон үйлдлүүдтэй бараг адилхан. Аравтын бутархайн бичлэгт хуваарийг бичих шаардлагагүй. Энэ нь тухайн тооны байрлалаар тодорхойлогдож байдаг. Бичлэг нь эхлээд тооны бүхэл хэсэг, дараа нь аравтын таслал тэгээд бутархай хэсэг. Аравтын таслалын дараагийн эхний тоо аравтын, хоёр дахь тоо нь зуутын, гурав дахь тоо нь мянгатын г.м заана. Аравтын таслалын дараа байрлах тоонуудыг аравтын орнууд гэнэ. Жишээ

Аравтын бутархайн нэг давуу тал нь түүнийг маш амархан энгийн бутархайд шилжүүлж болдог.Аравтын таслалын ард байгаа тоо нь / жишээнээс 5047 / хүртвэр болно. Хуваарь нь 10 -ын n зэрэг байна. n нь аравтын орны тоотой тэнцүү. 9.5047 бутархайн хувьд n=4 байна. Тэгвэл

гэсэн үг юм.

Аравтын бутархай нь бүхэл хэсэггүй бол аравтын таслалын өмнө тэг тавина

 

Аравтын бутархайн шинжүүд.

  1. Аравтын бутархайн ард тэгийг нэмж бичихэд утга нь өөрчлөгдөхгүй. 13.6=13.6000
  2. Аравтын бутархайн эцэст байгаа тэгийг устгахад утга нь өөрчлөгдөхгүй. 0.00123000=0.00123  Санамж. Эцэст нь биш тэгийг устгаж болохгүй
  3. Аравтын таслалын байрлалыг баруун тийш нь 1, 2, 3 г.м шилжүүлбэл бутархай 10, 100, 1000 г.м дахин өснө. 3.675 ---> 367.5 / бутархай 100 дахин өссөн энэ нь бутархайг 100 аар үржүүлсэнтэй адил/
  4. Аравтын таслалын байрлалыг зүүн тийш нь 1, 2, 3 г.м шилжүүлбэл бутархай 10, 100, 1000 г.м дахин буурна. 1536.78 ---> 1.53678 / бутархай 1000 дахин буурсан энэ нь бутархайг 1000 д хуваасантай адил/


Үелэх аравтын бутархай нь өөртөө давтагдасан төгсгөлгүй үргэлжлэх хэсэг буюу үеийг агуулж болно. Үеийг халтанд бичнэ.

Жишээ нь 0.12345123451234512345 ...=0.(12345).  47:11=4.27272727...=4.(27).

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 3807 Бүртгүүлэх

Аравтын бутархайг үржүүлэх.

Эхлээд бутархайг аравтын таслалыг тооцохгүйгээр бүхэл тоон адилаар үржүүлнэ. Гарсан үржвэрийн аравтын орон нь үржигдхүүнүүдийн аравтын орнуудын нийлбэртэй тэнцүү байна.

Санамж: Үржвэрийн аравтын таслалыг тавихаас өмнө сүүлийн тэгийг устгаж болохгүй.

Жишээ.

Үржигдхүүнүүдийн аравтын орнуудын нийлбэр 3+4=7. Үржвэрийн нийт цифр 6 байгаа учраас үржвэрийн зүүн талаас нэг тэг нэмээд тэгийн өмнө аравтын таслалыг тавина. 0.0197056

  Нээгдсэн тоо: 7761 Нийтийн

Язгуур доор үл мэдэгдэгчийг агуулсан тэгшитгэлийг иррационал тэгшитгэл гэдэг. Ийм төрлийн тэгшитгэлийг бодохдоо тэгшитгэлд байгаа язгуурууд арифметикийн байх ёстой гэсэн нөхцлийг тооцон үл мэдэгдэгчийн утгын мужийг заавал тооцох хэрэгтэй. Үүнийг тооцоогүйгээс ихэнх алдаанууд гардаг. Хичээлээр иррационал тэгшитгэлийг бодох аргуудын талаар авч үзэх болно.

  Нээгдсэн тоо: 7281 Төлбөртэй

Комбинаторикийн бодлогыг бодож сурах хэрэгтэй. Учир нь элсэлтийн ерөнхий шалгалтанд энэ сэдвийн бодлого орж ирэх нь гарцаагүй. Сэдэв өөрөө магадлалын онолын эхлэл болдог тул цаашдаа их дээд сургуульд үзэх хичээлүүдийн суурь тул сайн ойлгосон байх нь чухал. Эхний шатанд сэлгэмэл, гүйлгэмэл, хэсэглэлийн үндсэн томьёонуудын учрыг сайтар ойлгон тэдгээрийг бодлого бодоход хэрхэн яаж хэрэглэхийг сурсан байх шаардлагатай.

n төрлийн обьект байлаа гэж үзье. Зургийг хар. Энд обьектудыг төлөөлүүлэн ердөө 3 төрлийн дүрсээр жишээ авъя. Эдгээр дүрсүүд дээр сэлгэмэл, гүйлгэмэл, хэсэглэл гэсэн ухагдхууныг авч үзнэ. Нийт обьектын тоо энд нэг их чухал биш гол утга учир ялгааг ойлгох нь чухал. Ухагдхууны ялгааг сайн ойлгоогүйгээс болоод ихэнх сурагчид ийм төрлийн бодлогыг бодохдоо хүндрэлтэй тулдаг.

  Нээгдсэн тоо: 2742 Нийтийн

Тригнометрийн тэнцэл бишийг бодохдоо алгебрын тэнцэл бишийн шинжүүд болон төрөл бүрийн тригнометрийн хувиргалт, томьёонуудыг ашиглана. Тригнометрийн тэнцэл бишийг бодоход нэгж тойрогийг ашиглах нь бараг гарцаагүй байдаг.

Жишээ 1
тэнцэл бишийг бод.

Бодолт
Нэгж тойргийн радиусын нэг эргэлтэд энэ тэнцэл биш нь 0 < x < π үнэн байна. Одоо синусын үе 2πn ийг нэмэх шаардлагатай. : 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 66

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 95

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 101

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 124

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 125

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 179

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 120

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 116

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 128

 
Энэ долоо хоногт

Адил хажуут трапецын сууриуд 20 ба 12 см. Трапецыг багтаасан тойргийн төв их суурь дээр байрлах бол трапецын диагналыг ол.

Нээгдсэн тоо : 1169

 

тэгшитгэлийн язгууруудын нийлбэрийг ол.

Нээгдсэн тоо : 1089

 

Зурагт үзүүлсэн хагас тойрогт бол AB -ийн уртыг ол.

Нээгдсэн тоо : 840