Хаалт нээх

Алгебр үзэж эхлэж байгаа сурагчдад тохиолддог эхний хүндрэл үсгүүд орж ирэх дараагийнх нь хаалт нээх байдаг. Хаалтыг алгебрийн илэрхийлэлүүдэд ихээр ашигладаг тул Алгебрийн илэрхийллүүд сэдвийн бодлогуудыг бодох явцад аяндаа цээжлэгдэх болно. Алгебрийн дүрэм, тоерем, томьёонуудыг шууд цээжлэх гэснээс илүү бодлогуудад ашиглан хэрэглэвэл илүү хурдан тогтоодог.
Хаалт нээх гэдэг бол хаалттай бичигдсэн илэрхийллийг түүнтэй тэнцүү хаалтгүй илэрхийллээр солихыг хэлнэ.

Материалыг бүртгэлтэй хэрэглэгч үзнэ.

how_to_regБүртгүүлэх

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 7724 Төлбөртэй

Тригнометрийг ойлгох хамгийн энгийн арга бол нэгж тойрог юм. Нэгж тойргийг ойлгосон байхад тригнометрийн хувиргалт, тэшитгэлийг бодоход ашигладаг олон томьёог орлох боломжтой. Зургийг харцгаая.

Зургаас бид юуг харах боломжтой вэ?

  Нээгдсэн тоо: 2930 Бүртгүүлэх

Эерэг тоонуудын хувьд нэмэх, хасах үйлдлүүд энгийн боловч алгебрт эерэг, сөрөг тоонууд ойлголт орж ирснээр нэмэх хасах үйлдэл сурагчдыг ихээр сандралд оруулдаг. Энд хэдэн дүрмийг сайн ойлгоход л бүх зүйл хэвийн болно.

  Нээгдсэн тоо: 2484 Төлбөртэй

Дурын нэг болон хоёр үл мэдэгдэгчтэй тэгшитгэл, тэгшитгэлийн системүүдийг функцын графикаар ойролцоогоор бодож болдог. Хоёр үл мэдэгдэгчтэй тэгшитгэлийн системийг бодохдоо тэгшитгэл бүрийг x ба y ээс хамаарсан функционал хамаарал гэж үзээд тэдгээрийн графикийг байгуулна. Графикуудын огтлолцлын цэгийн координат нь x ба y үл мэдэгдэгчдийн утга болно.

Жишээ 1
тэгшитгэлийн системийг бод.

  Нээгдсэн тоо: 2361 Бүртгүүлэх

Ямар нэгэн муруй хавтгай дээр /Зур. 94/ A, B, C гэсэн гурван цэг байна гэж үзээд эдгээр цэгүүдийг дайруулан P огтлогч хавтгайг татъя. B, C цэгүүдийг A цэг рүү хоёр өөр чиглэлээр хөдөлгөе. Тэгвэл P хавтгай нь B, C цэгийг хаана авсан, A цэг рүү явж байгаа замаас хамаарахгүйгээр ямар нэгэн Q хязгаарын байрлал руу тэмүүлэх болно. Q хавтгайг A цэг дэх шүргэгч хавтгай гэнэ.
Гадаргуун зарим цэгүүд шүргэгч хавтгайгүй байж болно. Жишээ нь: Конусын оройд шүргэгч хавтгай байхгүй.

Бөөрөнхий гадаргуун шүргэгч P хавтгай нь /Зур. 95/ шүргэлтийн цэг A -д татсан OA радиустай перпендикуляр байна. Бөөрөнхий гадаргуу ба шүргэгч хавтгай нь шүргэлтийн цэг гэсэн ганцхан ерөнхий цэгтэй байдаг.

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 9

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 18

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 16

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 28

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 28

 

Хуваах нь нэг тоо нөгөө тоонд хэдэн удаа агуулагдаж буй тодорхойлох арифметикийн үйлдэл.
Хуваалтыг нэг бус удаа…

Нээгдсэн тоо : 28

 

Зуучлагч (Mediator) нь олон тооны обьектууд бие биетэйгээ холбоос үүсгэхгүйгээр харилцан ажиллах боломжийг хангах загварчлалын хэв юм. Ингэснээр…

Нээгдсэн тоо : 26

 

Делегатууд хичээлд ухагдхууны талаар дэлгэрэнгүй үзсэн ч жишээнүүд делегатийн хүчийг бүрэн харуулж чадахааргүй байсан.…

Нээгдсэн тоо : 38

 

react програмд олон хуудас үүсгэн удирдахын тулд react -ийн бүрэлдхүүнд ордоггүй ч түүнтэй нягт холбоотой ажилладаг нэмэлт пакетийг…

Нээгдсэн тоо : 44

 
Энэ долоо хоногт

функц өгөгдөв.

  1. f(x) функцын x0=5 абсцисстай M цэгт татсан шүргэгч шулууны тэгшитгэл
  2. f(x) функцын график, дээрх шүргэгч шулуун болон координатын тэнхлэгүүдээр хүрээлэгдсэн дүрсийн талбай  
  3. f(x) функцын графикийг M цэгт шүргэх, төв нь OX (абсцисс) тэнхлэг дээр орших тойргийн тэгшитгэл

Нээгдсэн тоо : 2767

 

илэрхийллийн a=36,7 тэнцүү байх утгыг ол.

Нээгдсэн тоо : 657

 

a ба b нь 3x2-x-1=0 тэгшитгэлийн шийдүүдтэй тэнцүү бол илэрхийллийн утгыг ол.

Нээгдсэн тоо : 693